Transcription factors, POU5F1/OCT4 and NANOG, whose expression is restricted to the inner cell mass (ICM) in mouse and human blastocysts, are used to characterize undifferentiated embryonic stem cells (ESC) in vitro. However, POU5F1 may not be a useful marker in domestic animals due to its expression in both ICM and trophectoderm (TE), while NANOG mRNA and protein expression have only been described fully in mice. In an effort to identify ESC markers for domestic animals, expression patterns of NANOG, POU5F1, and the cell surface markers (SSEA1, SSEA4, TRA-1-60, TRA-1-81) were examined in preimplantation goat embryos, a species that has proven to be a superior choice for the production of transgenic proteins in milk (biopharming). Our results indicate that while goat embryos express POU5F1, SSEA1, and SSEA4 proteins, their expression is not strictly restricted to the ICM. In a unique staining pattern, NANOG protein was localized to the nucleoplasm and nucleoli in ICM cells, but was localized strictly to nucleoli in TE. This pattern may reflect down-regulation of protein by sequestration/degradation utilizing a nucleolar mechanism known to operate in stem cells. Furthermore, NANOG mRNA in TE was also significantly down-regulated as compared with that in ICM. Taken together, this novel expression pattern of NANOG in goat preimplantation embryos suggests that NANOG could serve as marker of pluripotency in goats and may be useful in derivation and characterization of caprine ESC. This study is the first to characterize both NANOG mRNA and protein expression in any species other than the mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.20525DOI Listing

Publication Analysis

Top Keywords

pattern nanog
12
nanog mrna
12
nanog
9
nanog protein
8
stem cells
8
domestic animals
8
animals expression
8
mrna protein
8
protein expression
8
ssea1 ssea4
8

Similar Publications

LINE-1-Induced Retrotransposition Affects Early Preimplantation Embryo DNA Integrity and Pluripotency.

Int J Mol Sci

November 2024

Laboratory of Medical Genetics and Human Reproduction, School of Health Sciences, Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece.

Retrotransposable elements are implicated in genome rearrangements and gene expression alterations that result in various human disorders. In the current study, we sought to investigate the potential effects of long interspersed elements-1 (LINE-1) overexpression on the integrity and methylation of DNA and on the expression of three major pluripotency factors (OCT4, SOX2, NANOG) during the preimplantation stages of human embryo development. Human MI oocytes were matured in vitro to MII and transfected through intracytoplasmic sperm injection (ICSI) either with an EGFP vector carrying a cloned active human LINE-1 retroelement or with the same EGFP vector without insert as control.

View Article and Find Full Text PDF

The impact of c-Met inhibition on molecular features and metastatic potential of melanoma cells.

Neoplasma

October 2024

Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.

The aberrant activation of the hepatocyte growth factor receptor (c-Met) in malignant melanoma is associated with poor prognosis, fostering tumor progression, angiogenesis, and invasiveness. While therapeutic targeting of this pathway has shown promise in several tumors, our previous findings revealed increased tumorigenicity following tyrosine kinase inhibitor SU11274 treatment. Therefore, we hypothesized that administering c-Met inhibitors may elicit distinct effects in human melanoma cells.

View Article and Find Full Text PDF

Background: Lung cancer is one of the most common malignant tumors worldwide. Despite advances in lung cancer treatment, patients still face challenges related to drug resistance and recurrence. Current methods for evaluating anti-cancer drug activity are insufficient, as they rely on two-dimensional (2D) cell culture and animal models.

View Article and Find Full Text PDF

Wound healing comprises an intricate process to repair damaged tissue. Research on plant extracts with properties to expedite wound healing has been of interest, particularly their ability to enhance the stemness of keratinocyte stem cells. Hence, the present study aims to determine the wound healing and stemness potentiation properties of an ethanolic extract derived from fruit pulp (PKE).

View Article and Find Full Text PDF

Recent findings in cancer research have pointed towards the bidirectional interaction between circadian and hypoxia pathways. However, little is known about their crosstalk mechanism. In this work, we aimed to investigate this crosstalk at a network level utilizing the omics information of gallbladder cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!