Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computational scientists have developed algorithms inspired by natural evolution for at least 50 years. These algorithms solve optimization and design problems by building solutions that are 'more fit' relative to desired properties. However, the basic assumptions of this approach are outdated. We propose a research programme to develop a new field: computational evolution. This approach will produce algorithms that are based on current understanding of molecular and evolutionary biology and could solve previously unimaginable or intractable computational and biological problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrg1921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!