Human macrophage migration inhibitory factor: a proven immunomodulatory cytokine?

J Biol Chem

Department of Disease Biology, Rheumatology, and Inflammation and Discovery Research, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom.

Published: October 2006

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory mediator with the ability to induce various immunomodulatory responses and override glucocorticoid-driven immunosuppression. Some of these functions have been linked to the unusual enzymatic properties of the protein, namely tautomerase and oxidoreductase activities. However, there are conflicting reports regarding the functional role of these enzymatic properties in normal physiological homeostasis and disease progression. Therefore, we have produced a highly pure, virtually endotoxin-free recombinant MIF preparation and fully characterized this using a variety of biochemical and biophysical approaches. The recombinant protein, with demonstrable enzymatic activity, was then used to systematically examine the biological activity of MIF. Surprisingly, treatment with MIF alone failed to induce cytokine expression, with the exception of IL-8. However, co-treatment of lipopolysaccharide (LPS) in conjunction with MIF produced synergistic secretion of tumor necrosis factor-alpha, interleukin (IL)-1, and IL-8 compared with LPS alone. The potentiating effect of MIF was seen at physiologically relevant concentrations. These data suggest that MIF has no conventional cytokine activity but, rather, acts to modulate and amplify the response to LPS.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M601103200DOI Listing

Publication Analysis

Top Keywords

macrophage migration
8
migration inhibitory
8
inhibitory factor
8
enzymatic properties
8
mif
7
human macrophage
4
factor proven
4
proven immunomodulatory
4
immunomodulatory cytokine?
4
cytokine? macrophage
4

Similar Publications

Unlabelled: Chronic back pain (CBP) is the leading cause of disability affecting 1 in 10 people worldwide. Symptoms are marked by persistent lower back pain, reduced mobility, and heightened cold sensitivity. Here, we utilize a mouse model of CBP induced by injecting urokinase-type plasminogen activator (uPA), a proinflammatory agent in the fibrinolytic pathway, between the L2/L3 lumbar vertebrae.

View Article and Find Full Text PDF

Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods.

View Article and Find Full Text PDF

CREB3L1 facilitates pancreatic tumor progression and reprograms intratumoral tumor-associated macrophages to shape an immunotherapy-resistance microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Background: To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect.

View Article and Find Full Text PDF

The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.

View Article and Find Full Text PDF

Background: We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD).

Methods: We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!