A field study was performed to quantify personal dust exposures at a food processing facility. A review of the literature shows very little exposure information in the food processing industry. The processing area consisted of a series of four rooms, connected by a closed-loop ventilation system, housed within a larger warehouse-type facility. Workers were exposed to various fruit and vegetable dusts during the grinding, sieving, mixing and packaging of freeze-dried or air-dried products. Eight two-hour periods were monitored over two days. Personal total suspended particulate samples were collected on 37 mm PVC filters with 5 microm pore size according to National Institute for Occupational Safety and Health (NIOSH) Method 0500. The filters were analyzed gravimetrically. The two-hour task sampling personal dust exposures ranged from 0.33-103 mg/m3. For each worker, an eight-hour time weighted average (TWA) concentration was calculated, and these ranged from 3.08-59.8 mg/m3. Although there are no directly appropriate occupational exposure limits that may be used for comparison, we selected the Threshold Limit Value (TLV) for particulates not otherwise classified (PNOC) of 10 mg/m3 for inhalable particles. Neglecting the respiratory protection used, five out of eight of the worker time-weighted averages exceeded the TLV. It should be noted that the TLV is based on the inhalable fraction and in this study total suspended particulate was measured; additionally, the TLV is applicable for dusts that are insoluble or poorly soluble, and have low toxicity, which may have limited protective ability in this case due to the irritant nature of certain dusts (e.g., jalapeno peppers, aloe vera). Sieving resulted in significantly higher exposure than grinding and blending. Measuring area concentrations alone in this environment is not a sufficient method of estimating personal exposures due to work practices for some operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1300/J096v11n01_06 | DOI Listing |
J Transl Med
January 2025
Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, 232000, China.
Background: PRDX2 is significantly expressed in various cancers and is associated with the proliferation of tumor cells. Nonetheless, the precise mechanism of PRDX2 in tumor immunity remains incompletely understood. This study aims to investigate the impact of PRDX2, which is highly expressed in lung adenocarcinoma, on T cells in the tumor immune microenvironment, and its immune action target to promote the immune escape of lung cancer cells, to provide a theoretical basis for lung adenocarcinoma treatment with PRDX2 as the target.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P. R. China. Electronic address:
Thiourea vulcanization accelerators (TVAs) have been detected in various household dust samples, indicating their widespread human exposure. Until now, the occurrence of TVAs in human urine, a suitable matrix for assessing human exposure, has remained unknown. The present study comprehensively examined eight kinds of TVAs in urine samples (n = 277) from participants living in Taizhou, China.
View Article and Find Full Text PDFEnviron Pollut
January 2025
College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China.
Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
Biomagnetic monitoring has rapidly emerged as a valuable tool in urban atmospheric pollution (UAP) assessment due to its high spatial resolution, complementing traditional monitoring systems. This review systematically elucidates the principles of plant dust retention and the factors influencing it, while also reviewing the advancements in global research on UAP monitoring through the magnetic properties of various plant species. We provide a comprehensive analysis of the current applications of biomagnetic monitoring in UAP and identify critical challenges, including species-specific monitoring discrepancies, complex pollution sources, and non-standardized sample preparation methods.
View Article and Find Full Text PDFSci Total Environ
January 2025
The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel; The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
Phosphorus (P) is pivotal for all organisms, yet its availability is, particularly in the marine habitat, limited. Natural, puff-shaped colonies of Trichodesmium, a genus of diazotrophic cyanobacteria abundant in the Red Sea, have been demonstrated to capture and centre dust particles. While this particle mining strategy is considered to help evade nutrient limitation, details behind the mechanism remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!