Antiestrogens target the estrogen receptor and counteract the growth stimulatory action of estrogen on human breast cancer. However, acquired resistance to antiestrogens is a major clinical problem in endocrine treatment of breast cancer patients. To mimic acquired resistance, we have used a model system with the antiestrogen sensitive human breast cancer cell line MCF-7 and several antiestrogen resistant cell lines derived from the parental MCF-7 cell line. This model system was used to study the expression and possible involvement in resistant cell growth of insulin-like growth factor binding protein 2 (IGFBP-2). By an oligonucleotide based microarray, we compared the expression of mRNAs encoding insulin-like growth factor binding protein 1,2,3,4,5 and 6 (IGFBP-1 to -6) in the parental MCF-7 cell line to three human breast cancer cell lines, resistant to the antiestrogen ICI 182,780 (Faslodex/Fulvestrant). Only IGFBP-2 mRNA was overexpressed in all three resistant cell lines. Thus, we compared the IGFBP-2 protein expression in MCF-7 cells to nine antiestrogen resistant breast cancer cell lines, resistant to either ICI 182,780 or tamoxifen or RU 58,668 and found that IGFBP-2 was overexpressed in all nine resistant cell lines. Three of the resistant cell lines, resistant to different antiestrogens, were selected for further studies and IGFBP-2 overexpression was demonstrated at the mRNA level as well as the intra- and extracellular protein level. The objective of this study was to examine if IGFBP-2 is involved in growth of antiestrogen resistant human breast cancer cells. Therefore, IGFBP-2 expression was inhibited by antisense oligonucletides and siRNA. Specific inhibition of IGFBP-2 protein expression was achieved in MCF-7 and the three selected antiestrogen resistant cell lines, but no effect on resistant cell growth was observed. Thus, we were able to establish IGFBP-2 as a marker for antiestrogen resistant breast cancer cell lines, although IGFBP-2 was not a major contributor to the resistant cell growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ghir.2006.06.005DOI Listing

Publication Analysis

Top Keywords

cell lines
36
breast cancer
32
resistant cell
32
antiestrogen resistant
24
human breast
20
cancer cell
20
lines resistant
16
resistant
15
cell
15
insulin-like growth
12

Similar Publications

Immune checkpoint inhibitors have improved the treatment of metastatic renal cell carcinoma (RCC), with the combination of nivolumab (NIVO) and ipilimumab (IPI) showing promising results. However, not all patients benefit from these therapies, emphasizing the need for reliable, easily assessable biomarkers. This multicenter study involved 116 advanced RCC patients treated with NIVO + IPI across nine oncology centers in Poland.

View Article and Find Full Text PDF

Effects of photobiomodulation in mitochondrial quantity, biogenesis and mitophagy-associated genes in breast cancer cells.

Lasers Med Sci

January 2025

Departamento de Biofísica e Biometria Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.

In this article, we aim to evaluate the effects of photobiomodulation on mitochondria quantity, biogenesis, and mitophagy-associated genes in breast cancer (BC) cells. Both models were irradiated with a low-power infrared laser (880 nm, 150 mW) and amber LED (617 nm, 1500 mW), alone or simultaneously. We evaluated the mRNA expression of PINK1 and PGC-1α genes, and the mitochondrial number was assessed based on the ratio of mitochondrial DNA/genomic DNA (mtDNA/gDNA).

View Article and Find Full Text PDF

Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.

View Article and Find Full Text PDF

AHNAK2: a potential diagnostic biomarker for pancreatic cancer related to cellular motility.

Sci Rep

January 2025

Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.

Pancreatic ductal adenocarcinoma lacks suitable biomarkers for early diagnosis of disease. In gene panels developed for early diagnosis of pancreatic cancer, high AHNAK2 mRNA expression was one possible biomarker. In silico analysis of published human sample datasets (n = 177) and ex vivo analysis of human plasma samples (n = 30 PDAC with matched 30 healthy control) suggested AHNAK2 could be a diagnostic biomarker.

View Article and Find Full Text PDF

Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent mA regulation.

Cell Mol Life Sci

January 2025

The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!