Caspase-5 is a caspase-1-like protease with pro-apoptotic and pro-inflammatory activities. Here we have identified a novel exon at the 5'-end of the human caspase-5 gene. This novel exon was present in six alternatively spliced caspase-5 mRNA variants expressed in human peripheral blood mononuclear cells (PBMC) and encoded the previously unknown amino-terminus of caspase-5. The genomic region upstream of this exon contained sequence elements homologous to those of the caspase-11 promoter in the mouse, and transcription of caspase-5 was upregulated by lipopolysaccharide (LPS) in a caspase-11-like manner in human PBMC in vivo. Taken together, our findings call for a revision of the structure of caspase-5 at the genomic level as well as at the mRNA and protein levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.07.104DOI Listing

Publication Analysis

Top Keywords

novel exon
12
caspase-5 genomic
8
caspase-5
7
identification novel
4
exon
4
exon encoding
4
encoding amino-terminus
4
amino-terminus predominant
4
predominant caspase-5
4
caspase-5 variants
4

Similar Publications

Non-Small Cell Lung Cancer (NSCLC) is a formidable global health challenge, responsible for the majority of cancer-related deaths worldwide. The Platelet-Derived Growth Factor Receptor (PDGFR) has emerged as a promising therapeutic target in NSCLC, given its crucial involvement in cell growth, proliferation, angiogenesis, and tumor progression. Among PDGFR inhibitors, avapritinib has garnered attention due to its selective activity against mutant forms of PDGFR, particularly PDGFRA D842V and KIT exon 17 D816V, linked to resistance against conventional tyrosine kinase inhibitors.

View Article and Find Full Text PDF

Background: Fibrous dysplasia (FD), caused by activating mutations of GNAS, is a skeletal disorder with considerable clinicopathological heterogeneity. Although prevalent mutations such as R201C and R201H dominate in FD, a limited number of rare mutations, including R201S, R201G, and Q227L, have been documented. The scarcity of information concerning these uncommon mutations motivates our investigation, seeking to enhance comprehension of this less-explored subgroup within FD.

View Article and Find Full Text PDF

KNG1 mutations (c.618 T > G and c.1165C > T) cause disruption of the Cys206-Cys218 disulfide bond and truncation of the D5 domain leading to hereditary high molecular weight kininogen deficiency.

Clin Biochem

January 2025

Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Hematology, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China. Electronic address:

Background: High molecular weight kininogen (HMWK), encoded by the kininogen-1 (KNG1) gene, is a multifunctional glycoprotein closely associated with the initiation of blood coagulation, tumor growth, and other pathological processes.

Objective: We conducted a study on the clinical phenotype, genetic mutations, and molecular pathogenesis of a female patient with uterine leiomyosarcoma, who presented with HMWK deficiency and an isolated prolonged activated partial thromboplastin time (APTT).

Methods: Clinical phenotyping was conducted through APTT mixing studies, quantitative assessments of intrinsic coagulation factor activities, antigen levels of HMWK, and thromboelastography.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Background: ALG8-congenital disorder of glycosylation (ALG8-CDG) is a rare inherited metabolic disorder leading to severe multisystem manifestations, with no reported prenatal patients to date.

Methods: We describe two fetuses from a single family with ALG8-CDG presenting with prenatal hydrops, undergoing comprehensive prenatal ultrasound, umbilical cord blood biochemistry, autopsy, placental pathology, and genetic testing.

Results: Prenatal ultrasound revealed fetal hydrops, skeletal anomalies, cardiac developmental abnormalities, cataracts, echogenic kidneys and bowel, oligohydramnios, choroid plexus cysts, and intrauterine growth restriction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!