The assembly of lipoprotein(a) (Lp(a)) particles occurs via a two-step mechanism in which noncovalent interactions between apolipoprotein(a) (apo(a)) and the apolipoproteinB-100 component of low density lipoprotein precede the formation of a single disulfide bond. Although we have previously demonstrated that the rate constant for the covalent step of Lp(a) assembly can be enhanced by altering the conformational status of apo(a), the resultant rates of covalent Lp(a) particle formation measured in vitro are relatively slow. The large excess of Lp(a) (over apo(a)) observed in vivo can be accounted for by a preferential clearance of apo(a) over Lp(a) and/or a sufficiently high rate of covalent Lp(a) assembly. In the present study, we report that cultured human hepatoma cells secrete an oxidase activity that dramatically enhances the rate of covalent Lp(a) assembly. This activity is likely possessed by a protein because it is heat-sensitive and is retained in the concentrate following ultrafiltration through a 5 kDa cutoff filter. However, a small molecule cofactor for the activity is suggested by the observation that the activity is lost upon dialysis. Plots of Lp(a) assembly rate versus input apo(a) concentration gave rectangular hyperbolae; the reaction displayed an unusual dependence on the concentration of apoB-100, with increasing concentrations of apoB-100 resulting in slower rates of Lp(a) assembly at low concentrations of apo(a), an effect that was alleviated by higher apo(a) concentrations. Interestingly, V(max(app))/K(m(app)) ratios were insensitive to apoB-100 concentration, which is diagnostic of a ping-pong reaction mechanism. In this way, the putative Lp(a) oxidase may be functionally analogous to protein disulfide isomerase, which exhibits a similar mechanism during the catalysis of disulfide bond formation during protein folding, although we have ruled out a role for this enzyme in Lp(a) assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi060283t | DOI Listing |
Rev Cardiovasc Med
November 2024
Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
Lipoprotein a (Lp(a)) is a lipid biomarker that binds cholesterol and bears independent cardiovascular risk. Strategies to lower the level of Lp(a) and mitigate such risk are important both for primary and secondary prevention. Currently there are no approved therapies targeting Lp(a) directly.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
October 2024
Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia.
Spectrochim Acta A Mol Biomol Spectrosc
April 2024
School of Pharmacy, Thyriod and Breast Surgery, Medical Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China. Electronic address:
Supramolecular organic frameworks have been widely applied for biological detection and drug delivery. In this study, a supramolecular organic framework (SOF) is constructed through the self-assembly of a highly photosensitive triarylphosphine oxide guest molecule, OTPP-6-Methyl, with cucurbit [8] uril (CB [8]). The formation of the SOF gradually enhances the weak fluorescence of OTPP-6-Methyl owing to the restriction of the molecular folding motion.
View Article and Find Full Text PDFInt J Mol Sci
December 2023
Internal Medicine and Geriatrics, ESH "Hypertension Excellence Centre", SISA LIPIGEN Centre, IRCCS INRCA, 60127 Ancona, Italy.
Small interfering RNA (siRNA) represents a novel, fascinating therapeutic strategy that allows for selective reduction in the production of a specific protein through RNA interference. In the cardiovascular (CV) field, several siRNAs have been developed in the last decade. Inclisiran has been shown to significantly reduce low-density lipoprotein cholesterol (LDL-C) circulating levels with a reassuring safety profile, also in older patients, by hampering proprotein convertase subtilisin/kexin type 9 (PCSK9) production.
View Article and Find Full Text PDFBiomolecules
September 2023
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
Lysophosphatidic acid (LPA) is a promising biomarker candidate to screen for ovarian cancer (OC) and potentially stratify and treat patients according to disease stage. LPA is known to target the actin-binding protein gelsolin which is a key regulator of actin filament assembly. Previous studies have shown that the phosphate headgroup of LPA alone is inadequate to bind to the short chain of amino acids in gelsolin known as the PIP-binding domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!