Endosymbiotic Wolbachia bacteria have been previously shown to infect laboratory colonies of the human bed bug, Cimex lectularius L. (Heteroptera: Cimicidae), but little information exists regarding the extent of infection in natural populations. We assayed C. lectularius populations from five North American regions (California, Connecticut, Florida, New York, and Toronto, Canada) and one African region (Macha, Zambia) for Wolbachia infection by the polymerase chain reaction (PCR). Wolbachia infections were prevalent in all populations assayed (83-100%). There were no significant differences in infection frequency between geographic regions, between sexes, or between life stages (adult versus nymph). The potential utility of Wolbachia for alternative bed bug control strategies is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/0022-2585(2006)43[696:gdowii]2.0.co;2 | DOI Listing |
BMC Microbiol
January 2025
Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.
Background: The endosymbiotic relationship between Wolbachia bacteria and insects has been of interest for many years due to their diverse types of host reproductive phenotypic manipulation and potential role in the host's evolutionary history and population dynamics. Even though infection rates are high in Lepidoptera and specifically in butterflies, and reproductive manipulation is present in these taxa, less attention has been given to understanding how Wolbachia is acquired and maintained in their natural populations, across and within species having continental geographical distributions.
Results: We used whole genome sequencing data to investigate the phylogenetics, demographic history, and infection rate dynamics of Wolbachia in four species of the Spicauda genus of skipper butterflies (Lepidoptera: Hesperiidae), a taxon that presents sympatric and often syntopic distribution, with drastic variability in species abundance in the Neotropical region.
Viruses
November 2024
Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy.
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of global citriculture. In the Americas and in Asia, D. citri vectors the phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), which causes the fatal citrus disease huanglongbing, or citrus greening.
View Article and Find Full Text PDFActa Trop
December 2024
Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77554, USA.
Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens.
View Article and Find Full Text PDFGenetics
December 2024
Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!