Epidemiological data suggest that prolonged exposure to cyclic lumbar flexion elicits a chronic neuromuscular disorder and disability in workers. This study provides a physiological and biomechanical assessment of various repetitions of cyclic lumbar flexion sessions as a risk factor for development of an acute neuromuscular disorder. An in vivo feline model was subjected to 10 minutes of cyclic (0.25-HZ) loading, followed by a 10-minute rest period, repeated three times in one experimental group, six times in a second group, and nine times in the third group, followed by rest for 7 hours. Displacement of the lumbar viscoelastic tissue and reflex electromyographic (EMG) activity from the lumbar multifidus muscle were monitored. Creep developed and accumulated during each load/rest period and partially recovered during the subsequent rest. Loading periods were characterized by a decrease in reflex EMG activity with superimposed spasms. In the 7-hour recovery period, initial hyperexcitability was present in all groups, whereas only the six- and nine-repetition groups displayed significant delayed hyperexcitability, indicating the presence of acute inflammation. The mathematical model developed fit the data reasonably well, as the R2 values were generally near 0.90. It was concluded that the resulting delayed muscular hyperexcitability constitutes an acute neuromuscular disorder associated with exposure to many repetitions of cyclic lumbar flexion. The acute disorder can become chronic if not allowed sufficient rest to resolve itself. Workers engaged in cyclic lumbar flexion (e.g., loading/unloading, assembly workers) should avoid long-term exposure in order to prevent the development of a chronic neuromuscular condition known as cumulative trauma disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.20629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!