In silico classification of HERG channel blockers: a knowledge-based strategy.

ChemMedChem

Aureus Pharma, 174 quai de Jemmapes, 75010 Paris, France.

Published: June 2006

The blockage of the hERG potassium channel by a wide number of diverse compounds has become a major pharmacological safety concern as it can lead to sudden cardiac death. In silico models can be potent tools to screen out potential hERG blockers as early as possible during the drug-discovery process. In this study, predictive models developed using the recursive partitioning method and created using diverse datasets from 203 molecules tested on the hERG channel are described. The first model was built with hERG compounds grouped into two classes, with a separation limit set at an IC50 value of 1 microm, and reaches an overall accuracy of 81%. The misclassification of molecules having a range of activity between 1 and 10 microM led to the generation of a tri-class model able to correctly classify high, moderate, and weak hERG blockers with an overall accuracy of 90%. Another model, constructed with the high and weak hERG-blocker categories, successfully increases the accuracy to 96%. The results reported herein indicate that a combination of precise, knowledge management resources and powerful modeling tools are invaluable to assessing potential cardiotoxic side effects related to hERG blockage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.200500099DOI Listing

Publication Analysis

Top Keywords

herg channel
8
herg blockers
8
herg
7
silico classification
4
classification herg
4
channel blockers
4
blockers knowledge-based
4
knowledge-based strategy
4
strategy blockage
4
blockage herg
4

Similar Publications

Background/objectives: extract, obtained via microwave-enhanced extraction, was evaluated for its antioxidant, antidiabetic, and antimicrobial activities to explore its therapeutic potential.

Methods: The extraction was performed using microwave-enhanced techniques, and LC-MS/MS was employed to profile the metabolites in the extract. Total phenolic and flavonoid contents were quantified using spectrophotometric methods.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!