Successful imaging of living human cells using atomic force microscopy (AFM) is influenced by many variables including cell culture conditions, cell morphology, surface topography, scan parameters, and cantilever choice. In this study, these variables were investigated while imaging two morphologically distinct human cell lines, namely LL24 (fibroblasts) and NCI H727 (epithelial) cells. The cell types used in this study were found to require different parameter settings to produce images showing the greatest detail. In contact mode, optimal loading forces ranged between 2-2.8 x 10(-9) and 0.1-0.7 x 10(-9) (N) for LL24 and NCI H727 cells respectively. In tapping (AC) mode, images of LL24 cells were obtained using cantilevers with a spring constant of at least 0.32 N/m, while NCI H727 cells required a greater spring constant of at least 0.58 N/m. To obtain tapping mode images, cantilevers needed to be tuned to resonate at higher frequencies than their resonance frequencies to obtain images. For NCI H727 cells, contact mode imaging produced the clearest images. For LL24 cells, contact and tapping mode AFM produced images of comparable quality. Overall, this study shows that cells with different morphologies and surface topography require different scanning approaches and optimal conditions must be determined empirically to achieve images of high quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.20339 | DOI Listing |
Eur J Nucl Med Mol Imaging
December 2024
Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 0W8, Canada.
Purpose: We report the preclinical evaluation of potent long-acting [Ac]Ac-EBTATE against SSTR2-positive small cell lung cancer (SCLC) and pancreatic neuroendocrine tumors (pan-NETs).
Methods: The pharmacokinetic, biodistribution, and safety studies were evaluated in healthy female and/or male BALB/c mice after intravenous injections of [Ac]Ac-EBTATE. Further biodistribution and radioligand therapy were investigated in female athymic BALB/c nude mice bearing high or low SSTR2-expressing subcutaneous SCLC models NCI-H524 or NCI-H727, respectively, and in a pan-NET model QGP1.
Hum Cell
September 2024
Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
Lung neuroendocrine neoplasms (NENs) are a diverse group of tumors characterized by neuroendocrine (NE) differentiation. Among lung NENs, lung carcinoid (LC) is a rare tumor with unique characteristics. Recent research has highlighted the importance of transcription factors (TFs) in establishing gene expression programs in lung NENs such as small cell lung carcinoma.
View Article and Find Full Text PDFCancer Biol Ther
December 2024
Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA.
Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2024
Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy.
Front Pharmacol
February 2024
Medical Clinic III, Hematology, Oncology, Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Somatostatin analogues (SSAs) are commonly used in the treatment of hormone hypersecretion in neuroendocrine tumors (NETs), however the extent to which they inhibit proliferation is much discussed. We studied the antiproliferative effects of novel SSA lanreotide in bronchopulmonary NETs (BP-NETs). We focused on assessing whether pretreating cells with inhibitors for phosphatidylinositol 3-kinase (PI3K) and mammalian target for rapamycin (mTOR) could enhance the antiproliferative effects of lanreotide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!