An Arabidopsis thaliana mutant defective in chloroplast protein import was isolated and the mutant locus, cia5, identified by map-based cloning. CIA5 is a 21-kD integral membrane protein in the chloroplast inner envelope membrane with four predicted transmembrane domains, similar to another potential chloroplast inner membrane protein-conducting channel, At Tic20, and the mitochondrial inner membrane counterparts Tim17, Tim22, and Tim23. cia5 null mutants were albino and accumulated unprocessed precursor proteins. cia5 mutant chloroplasts were normal in targeting and binding of precursors to the chloroplast surface but were defective in protein translocation across the inner envelope membrane. Expression levels of CIA5 were comparable to those of major translocon components, such as At Tic110 and At Toc75, except during germination, at which stage At Tic20 was expressed at its highest level. A double mutant of cia5 At tic20-I had the same phenotype as the At tic20-I single mutant, suggesting that CIA5 and At Tic20 function similarly in chloroplast biogenesis, with At Tic20 functioning earlier in development. We renamed CIA5 as Arabidopsis Tic21 (At Tic21) and propose that it functions as part of the inner membrane protein-conducting channel and may be more important for later stages of leaf development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560916 | PMC |
http://dx.doi.org/10.1105/tpc.106.044305 | DOI Listing |
Plant Cell Rep
December 2024
Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.
Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
Studying the evolutionary history of plants in the Qinghai-Tibetan Plateau region provides a theoretical basis for the conservation and use of plant genetic resources. In this study, we analyzed five chloroplast gene fragments to examine the genetic diversity and phylogeography of Prunus mira in 577 individuals from 32 populations. The results indicated that P.
View Article and Find Full Text PDFFood Chem
December 2024
Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. Electronic address:
Shaking, essential in oolong tea production, is becoming an innovative method to impart floral fragrance. Research on shaking primarily concentrates on biological underpinnings, including modifications in gene expression and stress-triggered enzymatic catalysis, and consequent physicochemical properties. Water phase and distribution, reshaped by shaking and affected the biological and physicochemical alterations of tea leaves, is always ignored.
View Article and Find Full Text PDFPlants (Basel)
October 2024
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China.
fruit is known for its high acidity, surpassing that of most other fruits. The metabolism of organic acids in these fruits significantly influences sugar and calcium accumulation. However, research on this metabolic process is limited.
View Article and Find Full Text PDFProtein Sci
November 2024
Department of Chemistry - Biochemistry, Johannes Gutenberg University, Mainz, Germany.
The inner membrane associated protein of 30 kDa (IM30), a member of the endosomal sorting complex required for transport (ESCRT-III) superfamily, is crucially involved in the biogenesis and maintenance of thylakoid membranes in cyanobacteria and chloroplasts. In solution, IM30 assembles into various large oligomeric barrel- or tube-like structures, whereas upon membrane binding it forms large, flat carpet structures. Dynamic localization of the protein in solution, to membranes and changes of the oligomeric states are crucial for its in vivo function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!