Hydrogen plasma surface activation of silicon for biomedical applications.

Biomol Eng

Department of Physics & Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China.

Published: February 2007

Silicon has gradually been recognized to be an essential trace element in the normal metabolism of higher animals, and the role of silicon in the human body has aroused interests in the biomedical community. In fact, the interactions between silicon-based devices and the human body such as biosensors and microelectromechanical systems (MEMS) often suffer from poor biocompatibility. In this work, hydrogen plasma immersion ion implantation (H-PIII) is conducted to improve the bioactivity or bone conductivity of silicon. In order to investigate the formation mechanism of bone-like apatite on the surface of the hydrogen implanted silicon wafer, two comparative experiments, hydrogenation and argon bombardment, are performed. The H-PIII sample exhibits an amorphous surface consisting of Si-H bonds. After immersion in simulated body fluids, a negatively charged surface containing the functional group ([triple bond]Si-O-) is produced and bone-like apatite is observed to nucleate and grow on the surface. The surface of the H-PIII silicon wafer favors the adhesion and growth of osteoblast cells and good cytocompatibility may be inferred.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioeng.2006.05.006DOI Listing

Publication Analysis

Top Keywords

hydrogen plasma
8
human body
8
bone-like apatite
8
silicon wafer
8
surface
6
silicon
6
plasma surface
4
surface activation
4
activation silicon
4
silicon biomedical
4

Similar Publications

One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.

View Article and Find Full Text PDF

The apoplastic pH (pH) in plants is susceptible to environmental stimuli. However, the biological implications of pH variation have remained largely unknown. The universal stress phytohormone abscisic acid (ABA) as well as the major environmental stimuli drought and salinity were selected as representative cases to investigate how changes in pH relate to plant behaviors in Arabidopsis.

View Article and Find Full Text PDF

Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.

View Article and Find Full Text PDF

Naturally occurring peptides display a wide mass distribution after ionization due to the presence of heavy isotopes of C, H, N, O, and S and hydrogen loss. There is a crucial need for sensitive methods that collect as much information as possible about all plasma peptide forms. Statistical analysis of the delta mass distribution of peptide precursors from MS/MS spectra that were matched to 63,077 peptide sequences by X!TANDEM revealed Gaussian peaks representing heavy isotopes and hydrogen loss at integer delta mass values of -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da.

View Article and Find Full Text PDF

High-concentration oxygen inhalation is the primary intervention to prevent perioperative hypoxemia. However, there are concerns that this may induce an imbalance in oxidation‒reduction processes, particularly in pediatric patients with compromised antioxidant defenses. This study aimed to evaluate the impact of varying intraoperative concentrations of oxygen inhalation on oxidative stress in children by analyzing plasma biomarkers, oxygenation indices, and the duration of surgery and oxygen inhalation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!