A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. | LitMetric

Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis.

Cell Metab

Department of Microbiology and Immunology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan.

Published: August 2006

Bone homeostasis requires a delicate balance between the activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Various molecules coordinate osteoclast function with that of osteoblasts; however, molecules that mediate osteoclast-osteoblast interactions by simultaneous signal transduction in both cell types have not yet been identified. Here we show that osteoclasts express the NFATc1 target gene Efnb2 (encoding ephrinB2), while osteoblasts express the receptor EphB4, along with other ephrin-Eph family members. Using gain- and loss-of-function experiments, we demonstrate that reverse signaling through ephrinB2 into osteoclast precursors suppresses osteoclast differentiation by inhibiting the osteoclastogenic c-Fos-NFATc1 cascade. In addition, forward signaling through EphB4 into osteoblasts enhances osteogenic differentiation, and overexpression of EphB4 in osteoblasts increases bone mass in transgenic mice. These data demonstrate that ephrin-Eph bidirectional signaling links two major molecular mechanisms for cell differentiation--one in osteoclasts and the other in osteoblasts--thereby maintaining bone homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2006.05.012DOI Listing

Publication Analysis

Top Keywords

bone homeostasis
12
osteoblasts molecules
8
ephb4 osteoblasts
8
osteoblasts
5
bidirectional ephrinb2-ephb4
4
signaling
4
ephrinb2-ephb4 signaling
4
signaling controls
4
bone
4
controls bone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!