Lessons from large-scale gene profiling of the liver in alcoholic liver disease.

Hepatol Res

Division of Gastroenterology/Hepatology, Department of Medicine, University of Louisville School of Medicine, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202, USA.

Published: April 2005

This review examines the studies pertaining to large-scale gene profiling of liver cells and the whole liver as performed with the aid of macro- or microarray gene detection technology under the conditions of alcohol-induced liver injury. The review emphasizes the variability of the data as a function of strain, species, and model of alcohol-induced liver injury employed in different studies. Further, the review highlights the importance of determining if changes in transcriptome expression are parallelled by changes in proteome and metabolome of the liver. On the basis of such data, models can be constructed to unravel new mechanistic aspects of alcohol-induced liver injury and to design novel therapies for alcoholic liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hepres.2005.02.004DOI Listing

Publication Analysis

Top Keywords

alcohol-induced liver
12
liver injury
12
liver
9
large-scale gene
8
gene profiling
8
profiling liver
8
alcoholic liver
8
liver disease
8
lessons large-scale
4
liver alcoholic
4

Similar Publications

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a significant threat to global public health. Despite reports of liver injury during viral disease, the occurrence and detailed mechanisms underlying the development of secondary exogenous liver injury, particularly in relation to changes in metabolic enzymes, remain to be fully elucidated. Therefore, this study was aimed to investigate the mechanisms underlying SARS-CoV-2-induced molecular alterations in hepatic metabolism and the consequent secondary liver injury resulting from alcohol exposure.

View Article and Find Full Text PDF

The Effects of Moderate to High Static Magnetic Fields on Pancreatic Damage.

J Magn Reson Imaging

January 2025

High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.

Background: Pancreatic damage is a common digestive system disease with no specific drugs. Static magnetic field (SMF), the key component of magnetic resonance imaging (MRI), has demonstrated prominent effects in various disease models.

Purpose: To study the effects of 0.

View Article and Find Full Text PDF

Alcohol-related liver disease (ALD) is a serious global health concern, characterized by liver inflammation and progressive fibrosis. There are no Food and Drug Administration-approved drugs, thus effective treatments are needed. Severe alcoholic hepatitis (AH) is the most severe manifestation of ALD, with a 28-day mortality rate ranging from 20% to 50%.

View Article and Find Full Text PDF

This study demonstrates the effectiveness of propidium iodide as a reliable marker for detecting dead or dying cells in frozen liver tissue sections. By comparing propidium iodide staining with the widely used Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, both methods showed consistent results in disease models such as alcohol-induced fibrosis and Western diet-induced fatty liver. Additionally, propidium iodide was successfully co-stained with other fluorescent markers, like phalloidin (for actin filaments) and antibodies targeting collagen, enabling detailed spatial analysis of dying cells within tissue.

View Article and Find Full Text PDF
Article Synopsis
  • High-mobility group box-1 (HMGB1) levels rise and undergo post-translational modifications (PTMs) with alcohol consumption, potentially influencing the development of alcohol-associated liver disease (AALD).
  • Researchers used a specific model of liver injury caused by alcohol to explore how manipulating HMGB1's expression and modifications in liver cells and immune cells impacts AALD.
  • Their findings show that different forms of HMGB1 have contrasting effects: oxidized HMGB1 (O) worsens liver injury while acetylated HMGB1 (Ac) can protect against these harmful effects, highlighting the importance of targeting O HMGB1 in treating AALD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!