Cytokines are important in adult hematopoiesis, yet their function in embryonic hematopoiesis has been largely unexplored. During development, hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, yolk sac (YS), and placenta and require the Runx1 transcription factor for their normal generation. Since IL-3 is a Runx1 target and this cytokine acts on adult hematopoietic cells, we examined whether IL-3 affects HSCs in the mouse embryo. Using Runx1 haploinsufficient mice, we show that IL-3 amplifies HSCs from E11 AGM, YS, and placenta. Moreover, we show that IL-3 mutant embryos are deficient in HSCs and that IL-3 reveals the presence of HSCs in the AGM and YS prior to the stage at which HSCs are normally detected. Thus, our studies support an unexpected role for IL-3 during development and strongly suggest that IL-3 functions as a proliferation and/or survival factor for the earliest HSCs in the embryo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2006.07.002DOI Listing

Publication Analysis

Top Keywords

unexpected role
8
il-3
8
role il-3
8
development hematopoietic
8
hematopoietic stem
8
stem cells
8
hscs
7
il-3 embryonic
4
embryonic development
4
cells cytokines
4

Similar Publications

The polyketide specialized metabolites of bacteria are attractive targets for generating analogues, with the goal of improving their pharmaceutical properties. Here, we aimed to produce C-26 derivatives of the giant anti-cancer stambomycin macrolides using a mutasynthesis approach, as this position has been shown previously to directly impact bioactivity. For this, we leveraged the intrinsically broad specificity of the acyl transferase domain (AT) of the modular polyketide synthase (PKS), which is responsible for the alkyl branching functionality at this position.

View Article and Find Full Text PDF

Change in self-determination-related constructs in persons with severe or profound intellectual and multiple disabilities in the context of transitions.

J Intellect Disabil

January 2025

Department of Clinical Child and Family Studies, Faculty of Behavioural and Movement Sciences and LEARN! Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

This study explored the changes in self-determination-related constructs during transitions in the lives of persons with severe or profound intellectual and multiple disabilities. Questionnaires about autonomy support, basic psychological need expressions, and subjective well-being were filled out twice by family caregivers who foresaw an important transition in the near future ( = 40; pre-post design). Average changes in outcomes across a period of 6-13 months were not statistically significant.

View Article and Find Full Text PDF

Unexpected species diversity in the understanding of selenium-containing soil invertebrates.

Sci Rep

January 2025

Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Hubei Zhongke Research Institute of Industrial Technology, Huanggang Normal University, Huanggang, 438000, Hubei, China.

Yutangba, situated in Enshi City, Hubei Province, is globally noted for its high selenium (Se) content. Soil invertebrates are essential to the functionality and services of terrestrial ecosystems, yet their community composition in this region remains under-explored. This study utilized environmental DNA metabarcoding to investigate the interrelations among environmental factors, soil invertebrate diversity, and community characteristics concerning soil Se content, pH, and moisture content in the region.

View Article and Find Full Text PDF

One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.

View Article and Find Full Text PDF

Paradoxical effects of inhibition of Δ14-reductase and Δ7-reductase on porcine oocyte maturation and subsequent embryo development after parthenogenetic activation.

Theriogenology

January 2025

Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea. Electronic address:

Follicular fluid-derived meiosis-activating sterol (FF-MAS), an intermediate in the cholesterol biosynthesis pathway, plays a crucial role in the meiotic resumption of mammalian oocytes. Maintaining a high concentration of FF-MAS in vitro is challenging; therefore, AY9944 A-7, an inhibitor of Δ14-reductase [which converts FF-MAS to testis meiosis-activating sterol (T-MAS)] and Δ7-reductase (which converts T-MAS to cholesterol), has been used to enhance oocyte maturation. This study examined the effects of various concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 on porcine oocyte maturation and subsequent embryo development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!