A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis. | LitMetric

Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis.

Metab Eng

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100, USA.

Published: September 2006

Curdlan-producing Agrobacterium sp. is unique in possessing a highly efficient UDP-glucose regeneration system. A broad-host-range expression strategy was successfully developed to exploit the unique metabolic capability for UDP-galactose regeneration during oligosaccharide synthesis. The engineered Agrobacterium cells functioned as a UDP-galactose regeneration system, allowing galactose-containing disaccharides to be synthesized from glucose or other simple sugars. Unexpectedly, a lag period of 24h preceded the active synthesis, which could be eliminated with rifampicin. An intracellular nucleotide profiling revealed that the UMP level was elevated by 3.8 fold in the presence of rifampicin, suggesting that rifampicin simulated a nitrogen-limitation condition that triggered the metabolic change. Product selectivity was improved nearly 40-fold by using high acceptor concentration and restricting glucose supply. N-acetyllactosamine concentration near 20 mM (7.5 g/l) was obtained, demonstrating the effectiveness of the engineered strain in UDP-galactose regeneration. This organism could be engineered to regenerate other UDP-sugar nucleotides using the same strategy as illustrated here.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2006.05.004DOI Listing

Publication Analysis

Top Keywords

udp-galactose regeneration
16
regeneration oligosaccharide
8
oligosaccharide synthesis
8
regeneration system
8
regeneration
5
metabolic engineering
4
engineering agrobacterium
4
udp-galactose
4
agrobacterium udp-galactose
4
synthesis curdlan-producing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!