The objectives of this work were (i) to prepare physically stable cationic microparticles and (ii) to study the impact of the surface properties on microparticle phagocytosis and the phenotype of dendritic cells (DC). Protein loaded biodegradable microparticles from poly(lactic-co-glycolic acid) [PLGA] were produced in a micromixer-based w/o/w solvent evaporation procedure. Anionic particles were obtained by using polyvinyl alcohol (PVA) as stabilizing agent; for cationic surfaces cetyltrimethylammonium bromide (CTAB) and chitosan/PVA or DEAE-dextran/PVA blends were evaluated. In phagocytosis studies human monocytes and monocyte-derived DC were incubated with microparticles and analysed by flow cytometry. While CTAB modified microparticles lost their positive charge and aggregated due to CTAB desorption from the particle surface, the modification with chitosan and DEAE-dextran resulted in stable microparticles without cell toxicity. Due to a very low endotoxin content, phagocytosis of anionic and cationic microparticles did not induce an upregulation of maturation-associated surface markers on DC. DEAE-dextran modified microparticles showed an enhanced model protein delivery into phagocytic cells. Overall, PLGA microparticles are suitable vehicles for protein delivery to DC, which might be used for DC-based cell therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2006.06.020DOI Listing

Publication Analysis

Top Keywords

cationic microparticles
12
microparticles
9
stable cationic
8
microparticles enhanced
8
enhanced model
8
dendritic cells
8
modified microparticles
8
protein delivery
8
model antigen
4
antigen delivery
4

Similar Publications

The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (D), which varied from 87.7 nm to 1618.

View Article and Find Full Text PDF

Targeted delivery of a selenium-sulfa compound via cationic starch microparticles: Modulation of oxidative stress and pain pathways in fibromyalgia-like symptoms in mice.

Int J Biol Macromol

December 2024

Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, 96010-900 Pelotas, RS, Brazil. Electronic address:

Cationic starch microparticles (CStMPs) loaded with 4-amino-3 -(phenylselenyl)benzenesulfonamide (4-APSB) were prepared and investigated in a model of fibromyalgia (FM) induced by intermittent cold stress (ICS) in male and female Swiss mice. The CStMPs/4-APSB were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, zeta potential, and particle size measurements, providing information about their chemical composition, surface charge, morphology/microstructure, and size (1.50 ± 0.

View Article and Find Full Text PDF

Microparticles Mediate Lipopolysaccharide-induced Inflammation and Chronic Pain in Mouse Model.

Neuromolecular Med

November 2024

Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India.

Recent evidence highlights microparticles (MPs) as crucial players in intercellular communication among immune cells, yet their role in inflammation-induced chronic pain remains unexplored. In this study, we investigated the involvement of MPs in the progression of inflammation and associated pain using mouse models of chronic neuroinflammation induced by repeated intraperitoneal injections of lipopolysaccharide (LPS; 1 mg/kg for four consecutive days) in C57BL/6 mice. Chronic pain was analyzed at baseline (day 0) and on day 21 post-LPS injection using von Frey and the hot metal plate tests.

View Article and Find Full Text PDF

A Gold Rush: Designing Hydrogels for Selective Recovery in Wastewater Containing Mixed Metal Ions.

ACS Appl Mater Interfaces

December 2024

European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.

The use of synthetic hydrogels in wastewater treatment represents a promising and scalable approach to achieving clean water. By modulation of their chemical structure, hydrogels can effectively remove a wide range of toxic compounds, including emerging organic pollutants and heavy metals. For the latter, recovery is essential for both environmental protection and metal recycling.

View Article and Find Full Text PDF

Delivery system for dexamethasone phosphate based on a Zn-crosslinked polyelectrolyte complex of diethylaminoethyl chitosan and chondroitin sulfate.

Carbohydr Polym

January 2025

Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia. Electronic address:

Hybrid nano- and microparticles based on metal ion crosslinked biopolymers are promising carriers for the development of drug delivery systems with improved biopharmaceutical properties. In this work, dexamethasone phosphate-containing particles based on chondroitin sulfate and chitosan or diethylaminoethyl chitosan additionally crosslinked with Zn were prepared. Depending on the polycation/polyanion ratio in the system, anionic and cationic polyelectrolyte complexes (PECs) were obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!