[A new dimension of DNA analysis: genomic profiling by matrix CGH].

Verh Dtsch Ges Pathol

Deutsches Krebsforschungszentrum, Abteilung Molekulare Genetik (B060), Heidelberg.

Published: September 2006

Analysis of genetic alterations in tumor cells represent a first step to understand the molecular mechanism of cancer etiology and development. Due to the progress in genome research, it is feasible to assess the complexity of genomic changes on a large scale. Protocols for gene expression profiling using cDNA arrays have been developed allowing to test the activity of almost all human genes in tumor cells. Another important approach is matrix-CGH which was recently developed to assess gains and losses on the genomic level with high resolution. This method not only allows to narrow down the position of novel oncogenes or tumor suppressor-genes but also contributes to a refinement of tumor classifications. Since matrix-CGH can be performed under highly standardized conditions in a fully automatized way, it is suited for diagnostics in clinical laboratories.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tumor cells
8
dimension dna
4
dna analysis
4
analysis genomic
4
genomic profiling
4
profiling matrix
4
matrix cgh]
4
cgh] analysis
4
analysis genetic
4
genetic alterations
4

Similar Publications

Personalized Vascularized Tumor Organoid-on-a-Chip for Tumor Metastasis and Therapeutic Targeting Assessment.

Adv Mater

December 2024

Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China.

While tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy.

View Article and Find Full Text PDF

SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β.

J Exp Clin Cancer Res

December 2024

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown.

View Article and Find Full Text PDF

Immunophenotypic analysis on circulating T cells for early diagnosis of lung cancer.

Biomark Res

December 2024

Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasunup, Jeollanamdo, 58128, Republic of Korea.

The immune system continuously interacts with tumors, possibly leading to systemic alterations in circulating immune cells. However, the potential of these cancer-associated changes for diagnostic purposes remains poorly explored. To investigate this, we conducted a comprehensive flow cytometric analysis of 452 peripheral blood mononuclear cell (PBMC) samples from 206 non-small-cell lung cancer (NSCLC) patients, 100 small-cell lung cancer (SCLC) patients, 94 healthy individuals, and 52 benign lung disease (BLD) patients.

View Article and Find Full Text PDF

Atorvastatin inhibits glioma glycolysis and immune escape by modulating the miR-125a-5p/TXLNA axis.

Hereditas

December 2024

Department of Pathology, Central Hospital of Zibo, No.54, Communist Youth League West Road, Zhangdian District, Zibo City, Shandong Province, 255000, China.

Background: Conventional treatments, including surgery, radiotherapy and chemotherapy, have many limitations in the prognosis of glioma patients. Atorvastatin (ATOR) has a significant inhibitory effect on glioma malignancy. Thus, ATOR may play a key role in the search for new drugs for the effective treatment of gliomas.

View Article and Find Full Text PDF

Background: Mixed adenoneuroendocrine carcinoma (MANEC) of the cervix is a rare malignant tumor with high malignancy and poor prognosis, of which large-cell neuroendocrine carcinoma and HPV-independent adenocarcinoma are particularly rare, which have been reported limitedly in the literature. Here, we present 2 cases of MANEC of the cervix and discuss important considerations for diagnosing cervical poorly differentiated carcinoma.

Case Presentation: we reported two cases of mixed large cell neuroendocrine carcinoma and adenocarcinoma of the cervix, one HPV-independent and one HPV-associated, both with vaginal bleeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!