In trout hepatocytes, hypertonicity and cytosolic acidification are known to stimulate Na+/H+ exchanger (NHE) activity, which contributes to recovery of cell volume and intracellular pH (pHi), respectively. The present study investigated the signalling mechanisms underlying NHE activation under these conditions. Exposing trout hepatocytes to cariporide, a specific inhibitor of NHE-1, decreased baseline pHi, completely blocked the hypertonicity-induced increase of pHi and reduced the hypertonicity-induced proton secretion by 80%. Changing extracellular pH (pHe) above and below normal values, and allowing cells to adjust pHi accordingly, significantly delayed alkalinization during hypertonic exposure, whereas following an acid load an enhanced pHi recovery with increasing pHe was seen. Chelating Ca2+, and thereby preventing the hypertonicity-induced increase in intracellular Ca2+ ([Ca2+]i), significantly diminished hypertonic elevation of pHi, indicating that Ca2+ signalling might be involved in NHE activation. A reduction in alkalinization and proton secretion was also observed in the presence of the protein kinase A (PKA) inhibitor H-89 or the calmodulin (CaM) inhibitor calmidazolium. A complete inhibition of hypertonic- and acidification-induced changes of pHi concurrent with an increase in hypertonically induced proton efflux was seen with the protein kinase C (PKC) inhibitor chelerythrine. Recovery of pHi following sodium propionate addition was reduced by more than 60% in the presence of cariporide, was sensitive to PKA inhibition, and tended to be reduced by CaM inhibition. In conclusion, we showed that NHE-1 is the main acid secretion mechanism during hypertonicity and recovery following acid loading. In addition, Ca2+-, PKA- and CaM-dependent pathways are involved in NHE-1 activation for recovery of cell volume and pHi. On the other hand, PKC appeared to have an impact on NHE-independent pathways affecting intracellular acid-base homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.02357 | DOI Listing |
Antioxidants (Basel)
October 2024
Department of College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
The rainbow trout () is a typical cold-water species. However, due to global warming, it has experienced prolonged high-temperature stress. Research indicates that thermotolerance in rainbow trout varies by sex at multiple physiological levels.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 405 30, Sweden. Electronic address:
In vitro models based on permanent fish liver cell lines have proven to be versatile tools for examining chemical biotransformation and toxicity. However, their in vivo relevance remains uncertain due to their potentially de-differentiated phenotype. Here, we investigate whether a 3D cell culture environment can restore hepatocyte-like properties of the Rainbow trout liver cell line RTL-W1.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Northwest A&F University, China. Electronic address:
Environ Sci Technol
October 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China.
6PPD-quinone (6PPD-Q) is frequently detected in various environmental media, and the environmentally relevant concentrations can be fatal to . Notably, 6PPD-Q has two enantiomers (-6PPD-Q and -6PPD-Q). In this study, was separately exposed to each enantiomer and racemate of 6PPD-Q for 96 h at environmentally relevant concentrations, and livers were collected.
View Article and Find Full Text PDFJ Xenobiot
August 2024
Team of Animal Morphology and Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid model obtained from juvenile brown trout () primary hepatocytes under estrogenic stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!