White adipocyte proliferation is a hallmark of obesity, but it largely remains a mechanistic mystery. We and others previously demonstrated that surgical denervation of white adipose tissue (WAT) triggers increases in fat cell number, but it is unknown whether this was due to preadipocyte proliferation or maturation of existing preadipocytes that allowed them to be counted. In addition, surgical denervation severs not only sympathetic but also sensory innervation of WAT. Therefore, we tested whether sympathetic WAT denervation triggers adipocyte proliferation using 5-bromo-2'-deoxyuridine (BrdU) as a marker of proliferation and quantified BrdU-immunoreactive (ir) cells that were co-labeled with AD-3-ir, an adipocyte-specific membrane protein marker. The unilateral denervation model was used for all experiments where Siberian hamster inguinal WAT (IWAT) was unilaterally denervated, the contralateral pad was sham denervated serving as a within-animal control, and then BrdU was injected systemically for 6 days. When IWAT was surgically denervated, severing both sympathetic and sensory nerves, tyrosine hydroxylase (TH)-ir, a sympathetic nerve marker, and calcitonin gene-related peptide (CGRP)-ir, a sensory nerve marker, were significantly decreased, and BrdU+AD-3-ir adipocytes were increased approximately 300%. When IWAT was selectively sensory denervated via local microinjections of capsaicin, a sensory nerve-specific toxin, CGRP-ir, but not TH-ir, was decreased, and BrdU+AD-3-ir adipocytes were unchanged. When IWAT was selectively sympathetically denervated via local microinjections of 6-hydroxy-dopamine, a catecholaminergic-specific toxin, TH-ir, but not CGRP-ir, was significantly decreased, and BrdU+AD-3-ir adipocytes were increased approximately 400%. Collectively, these data provide the first direct evidence that sympathetic nerves inhibit white adipocyte proliferation in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00197.2006 | DOI Listing |
Background: Autonomic innervation of the heart plays a pivotal role not only in regulating the heart rate but also in modulating the cardiac cell microenvironment via cell-cell interactions and influencing the heart's repair capabilities. Currently, the primary clinical approach for treating myocardial infarction (MI) is percutaneous coronary intervention. However, the myocardial salvage rate remains low for patients with advanced disease.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.
View Article and Find Full Text PDFSci Rep
January 2025
Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.
Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206 M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown.
View Article and Find Full Text PDFAdipocyte
December 2025
Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!