AI Article Synopsis

  • A study examined how graminaceous plants like rice manage iron acquisition during Fe deficiency, using a microarray to analyze gene expression over time.
  • The gene OsIRO2, a transcription factor, showed strong expression in response to Fe deficiency and is specific to iron, not affected by other metal deficiencies.
  • OsIRO2 binds to a specific DNA sequence, indicating its role in regulating other genes involved in iron uptake, suggesting it's crucial for plant adaptation to low iron conditions.

Article Abstract

To clarify the molecular mechanism that regulates iron (Fe) acquisition in graminaceous plants, a time-course analysis of gene expression during Fe deficiency stress was conducted using a rice 22K oligo-DNA microarray. Twenty-one genes for proteins that function in gene regulation were induced by Fe deficiency. Of these genes, a putative basic helix-loop-helix (bHLH) transcription factor gene, named OsIRO2, was strongly expressed in both roots and shoots during Fe deficiency stress. The expression of OsIRO2 was induced exclusively by Fe deficiency, and not by deficiencies in other metals. Expression of the barley HvIRO2 gene, which is a homologue of OsIRO2, was also induced by Fe deficiency. An in silico search revealed that IRO2 is highly conserved among graminaceous plants, which include wheat, sorghum, and maize. The cyclic amplification and selection of targets (CASTing) technique revealed that OsIRO2 bound preferentially to the sequence 5'-ACCACGTGGTTTT-3', and the electrophoretic mobility shift assay revealed 5'-CACGTGG-3' as the core sequence for OsIRO2 binding. Sequences similar to the OsIRO2-binding sequence were found upstream of several genes that are involved in Fe acquisition, such as OsNAS1, OsNAS3, OsIRT1, OsFDH, OsAPT1, and IDS3. The core sequence of the OsIRO2-binding sequence occurred more frequently in the upstream regions of Fe deficiency-inducible genes than in the corresponding regions of non-inducible genes. These results suggest that IRO2 is involved in the regulation of gene expression under Fe-deficient conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erl054DOI Listing

Publication Analysis

Top Keywords

graminaceous plants
12
bhlh transcription
8
transcription factor
8
gene expression
8
deficiency stress
8
induced deficiency
8
osiro2 induced
8
core sequence
8
osiro2-binding sequence
8
gene
5

Similar Publications

Fungal keratitis caused by : a case report.

Front Med (Lausanne)

December 2024

Department of Ophthalmology, Ningbo Yinzhou No.2 Hospital, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang, China.

Background: We report a rare case of fungal keratitis caused by , a filamentous fungus that is widely distributed in soil and graminaceous plants.

Case Presentation: A 40-year-old Mongoloid male patient came to our outpatient clinic with painful swelling of the left eye and redness, after being cut by a tree branch 1 week prior. After examination, the patient was diagnosed with a corneal ulcer of the left eye, and was given levofloxacin eye drops and levofloxacin ophthalmic gel.

View Article and Find Full Text PDF

Function, structure, and regulation of Iron Regulated Transporter 1.

Plant Physiol Biochem

December 2024

Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China. Electronic address:

Iron (Fe) is an essential mineral for the growth and development of plants, as it serves as a vital co-factor for a multitude of enzymes that participate in a variety of physiological processes. Plants obtain Fe from the soil through their Fe uptake systems. Non-graminaceous plants utilize a reduction-based system for Fe uptake, which involves the conversion of Fe(III) to Fe(II) and subsequent absorption of Fe(II).

View Article and Find Full Text PDF
Article Synopsis
  • Lignin is a key component of plant cell walls, and studying its cleavage process can enhance straw production and reuse after decay.
  • The authors optimized four theoretical lignin structures using density functional theory, revealing changes in their infrared spectra indicative of molecular interactions, especially related to β-O-4 bonding.
  • Findings showed specific shifts in absorption peaks, which are important for understanding the spectral characteristics of organic macromolecules and tracking lignin degradation in grasses.
View Article and Find Full Text PDF

The plant metabolome is considered an important interface between the genome and its phenome, where it plays a significant role in regulating plant growth in response to various environmental cues. A wide array of specialized metabolites is produced by plants, which are essential for mediating environmental interactions and their adaptation. Notably, enhanced accumulation of these specialized metabolites, particularly plant secondary metabolites (PSMs), is a part of the chemical defense response that is directly linked to improved stress tolerance.

View Article and Find Full Text PDF

Plant biomass can significantly contribute to alternative energy sources. Sorghum bicolor is a promising plant for producing energy, but is susceptible to iron deficiency, which inhibits its cultivation in iron-limiting calcareous soils. The molecular basis for the susceptibility of sorghum to iron deficiency remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!