The efficiency of various heterogeneous solids consisting of palladium supported on hydrotalcite as catalysts in the Suzuki cross-coupling reaction between bromobenzene and phenylboronic acid was studied. Based on the catalytic activity results, the reaction develops to an acceptable extent with 100% selectivity at moderate temperatures in the presence of some of the catalysts. The best results were provided by a catalyst consisting of an acetate-pyridine complex of Pd supported on hydrotalcite that gave high conversion values even after three reuses. The reactions conditions were very mild (a temperature of 55 degrees C and atmospheric pressure). In fact, the catalyst provided conversion and selectivity results surpassing those of existing heterogeneous phase catalysts and most homogeneous phase catalysts for the same purpose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2006.06.058 | DOI Listing |
Org Chem Front
December 2024
Department of Chemistry, University of Basel St Johanns-Ring 19 Basel 4056 Switzerland https://www.chemie1.unibas.ch/Bmayor/.
This work explores the use of a cross-shaped organic framework that is used as a template for the investigation of multi-functionalized chromophores. We report the design and synthesis of a universal cross-shaped building block bearing two bromines and two iodines on its peripheral positions. The template can be synthesized on a gram scale in a five-step reaction comprising an oxidative homo-coupling macro-cyclization.
View Article and Find Full Text PDFOrg Lett
December 2024
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
We present a tandem aza-Heck/Suzuki cross-coupling reaction of -phenyl hydroxamic ethers with readily available arylboronic and alkenyl boronic acids. This protocol is enabled by a palladium catalyst paired with chiral phosphoramidite ligands, particularly under mild reaction conditions, yielding efficient and succinct synthetic routes to chiral isoindolinones with high enantioselectivity. Furthermore, this reaction exhibits excellent functional group compatibility and a rich diversity of subsequent transformations.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
Heliyon
December 2024
Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland.
Purpose: The monoacylglycerol lipase (MAGL) plays a pivotal role in modulating the endocannabinoid system and is considered an attractive therapeutic target for diseases in both the central nervous system and periphery. The current study aimed to develop and evaluate a suitable carbon-11 labeled tracer for imaging MAGL in preclinical studies.
Methods: (R)-YH168 was synthesized via a multi-step pathway and its half-maximal inhibitory concentration (IC) values were measured using an enzymatic assay.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!