Quantitative microscopy reveals 3D organization and kinetics of endocytosis in rat hepatocytes.

Microsc Res Tech

Structural Cell Biology, Centre for Biomedical Research, University of Basel, Switzerland.

Published: September 2006

In order to demonstrate the power of quantitative microscopy, the endocytic apparatus of rat hepatocytes was reexamined using in situ liver and short term cultured hepatocyte couplets that were allowed to internalize endocytic markers for various time intervals. Correlative confocal light and electron microscopy demonstrate a tubulovesicular reticulum representing the endocytic apparatus. Volume and membrane area account for 2% of cell volume and 30% plasma membrane surface. Colocalization analysis demonstrated that pathway-specific ligands and fluid-phase markers enter EEA1-positive vesicles, the early endosomal compartment, immediately after internalization. These vesicles are translocated rapidly from basolateral to perinuclear and apical locations. Ligands are sorted within 5 min to their respective pathways. Sequential colocalization of an asialoglycoprotein-pulse with rab7 and lamp3 demonstrates that early endosomes change into or fuse with late endosomes and lysosomes. Alternatively, markers are sequestered into the common endosome consisting of rab11-positive, long tubules that originate from early endosomes and show an affinity for the transcytotic marker pIgA and its receptor. This compartment mediates transcytosis by delivering the receptor-ligand complex to the subapical compartment, a set of apical, rab11-positive vesicles, which are connected to the tubular reticulum. We conclude that vesicular traffic between preexisting compartments, maturation or fusion of endocytic organelles, and transport in tubules act in concert and together mediate transport between compartments of a tubulovesicular endocytic apparatus. In addition, we show that quantitative microscopy using high resolution data sets can detect and characterize kinetics of various parameters thus adding a dynamic component to 3D information.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.20337DOI Listing

Publication Analysis

Top Keywords

quantitative microscopy
12
endocytic apparatus
12
rat hepatocytes
8
early endosomes
8
endocytic
5
microscopy reveals
4
reveals organization
4
organization kinetics
4
kinetics endocytosis
4
endocytosis rat
4

Similar Publications

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Spleen tyrosine kinase aggravates intestinal inflammation through regulating inflammatory responses of macrophage in ulcerative colitis.

Int Immunopharmacol

January 2025

Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China. Electronic address:

Background: Ulcerative colitis (UC) is a persistent chronic, non-specific inflammatory disease, and macrophages play a crucial role in its pathogenesis. Spleen tyrosine kinase (Syk) is strongly associated with the pathogenesis of several inflammatory diseases. However, the role of Syk in the pathogenesis of UC is still obscure.

View Article and Find Full Text PDF

Protocol for assessing and visualizing cell microaggregate formation in whole blood by imaging flow cytometry.

STAR Protoc

January 2025

Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, School of Computation, Information and Technology, TUM, Germany; Munich Institute of Biomedical Engineering, TUM, Germany. Electronic address:

Blood cell aggregates are clinically useful biomarkers in a number of medical disorders. This protocol provides accurate and quantitative analysis of cell aggregates using a small volume of whole blood and imaging flow cytometry. We describe steps for sample collection, staining, and measurement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!