https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=16885502&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=gram-positive+bacterial&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a0f93c1f310c6009c46&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1189/jlb.0506312 | DOI Listing |
Pathogens
January 2025
Elanco Animal Health, Greenfield, IN 46140, USA.
This study evaluated the minimum inhibitory concentration (MIC) of pradofloxacin against various swine respiratory pathogens, including , , , , and (), associated with disease in swine. This research was conducted in two phases: the initial phase examined isolates from the lungs that could be either commensal or pathogenic, while the second phase focused on systemic strains that spread from the respiratory tract to the brain. The pradofloxacin MIC values of the second phase were within the MIC range of the initial phase, with MIC and MIC values highlighting its potential as an effective antimicrobial agent.
View Article and Find Full Text PDFPathogens
January 2025
Department of Human Pathology, University of Messina, 98125 Messina, Italy.
The aim of this study was to investigate the differences between nosocomial and community microorganisms isolated from patients with UTI by determining their bacterial profile, antibiotic resistance and ability to produce biofilms. A retrospective study, based on bacterial isolates from consecutive urine samples collected between January 2019 and December 2023, was conducted at a university hospital. The main pathogens isolated from both community and hospital samples were the same, but their frequency of isolation differed.
View Article and Find Full Text PDFPathogens
December 2024
Intensive Care Unit, Department of Anesthesiology and Critical Care, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.
Ventriculo-meningitis or nosocomial meningitis/ventriculitis is a severe nosocomial infection that is associated with devastating neurological sequelae. The cerebrospinal fluid isolates associated with the infection can be Gram-positive or -negative, while the spp. is rarely identified.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Many biologically active compounds have been identified in the mucus of the garden snail , which are effective in the treatment of several diseases such as cancer, ulcers, wounds, etc. The incorporation of these compounds into the green synthesis of copper nanoparticles (CuONPs-Muc) was demonstrated in our previous study. Based on the synergistic effect of two reducing agents- snail mucus and ascorbic acid (AsA)-on CuSO.
View Article and Find Full Text PDFMolecules
January 2025
Department of Microbiology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
Graphite oxidation to graphene oxide (GO) is carried out using methods developed by Brodie (GO-B) and Hummers (GO-H). However, a comparison of the antibacterial properties based on the physicochemical properties has not been performed. Therefore, this paper outlines a comparative analysis of GO-H and GO-B on antibacterial efficacy against Gram-positive and Gram-negative bacterial cultures and biofilms in an aqueous environment and discusses which of the properties of these GO nanomaterials have the most significant impact on the antibacterial activity of these materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!