G protein-coupled receptors (GPCRs) are involved in the response of eukaryotic cells to a wide variety of stimuli, traditionally mediating their effects through heterotrimeric G proteins comprised of G alpha, G beta and G gamma subunits. The fission yeast Schizosaccharomyces pombe is an established tool for GPCR research, possessing two G alpha-dependent signalling cascades. A complete G alpha beta gamma complex has been characterised for the glucose-sensing pathway, but only the G alpha subunit, Gpa1p, has been identified in the pheromone-response pathway. Here, we report the use of the yeast two-hybrid system to identify a novel protein, Gnr1p, which interacts with Gpa1p. Gnr1p is predicted to contain seven WD repeats and to adopt a structure similar to typical G beta subunits. Disruption and overexpression studies reveal that Gnr1p negatively regulates the pheromone-response pathway but is not required for signalling. Human G beta subunits complement the loss of Gnr1p, functioning as negative regulators of G alpha signalling in fission yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2006.06.005DOI Listing

Publication Analysis

Top Keywords

beta subunits
12
alpha signalling
8
schizosaccharomyces pombe
8
human beta
8
alpha beta
8
beta gamma
8
fission yeast
8
pheromone-response pathway
8
alpha
5
beta
5

Similar Publications

Background: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.

View Article and Find Full Text PDF

Background: Germline haplodeficiency (RHD) is associated with thrombocytopenia, platelet dysfunction and predisposition to myeloid malignancies. Platelet expression profiling of a RHD patient showed decreased encoding for the A subunit of factor XIII, a transglutaminase that cross-links fibrin and induces clot stabilization. FXIII-A is synthesized by hematopoietic cells, megakaryocytes and monocytes.

View Article and Find Full Text PDF

Background: Fluoroethylnormemantine (FENM), a new Memantine (MEM) derivative, prevented amyloid-β[25-35] peptide (Aβ)-induced neurotoxicity in mice, a pharmacological model of Alzheimer's disease (AD) with high predictive value for drug discovery. Here, as drug infusion is likely to better reflect drug bioavailability due to the interspecies pharmacokinetics variation, we analyzed the efficacy of FENM after chronic subcutaneous (SC) infusion, in comparison with IP injections in two AD mouse models, Aβ-injected mice and the transgenic APP/PSEN1 (APP/PS1) line.

Methods: In Aβ-treated mice, FENM was infused at 0.

View Article and Find Full Text PDF

Circadian rhythm disruption (CRD), stemming from sleep disorders and/or shift work, is a risk factor for reproductive dysfunction. CRD has been reported to disturb nocturnal melatonin signaling, which plays a crucial role in female reproduction as a circadian regulator and an antioxidant. The hypothalamic-pituitary-ovarian (HPO) axis regulates female reproduction, with luteinizing hormone (LH) pulse pattern playing a pivotal role in folliculogenesis and steroidogenesis.

View Article and Find Full Text PDF

[Roles of ferroptosis in the development of diabetic nephropathy].

Zhejiang Da Xue Xue Bao Yi Xue Ban

December 2024

Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.

Article Synopsis
  • Diabetic nephropathy is a serious complication of diabetes that can lead to death, and ferroptosis (an iron-dependent cell death process) plays a role in its progression.
  • AMPK signaling can slow down diabetic nephropathy but excessive activation may cause autophagic death, while Nrf2 and HO-1 pathways can protect against ferroptosis; however, these pathways have complex effects.
  • Other factors like TGF-β1 and specific exosome-related signals also contribute to the development of diabetic nephropathy, suggesting potential new therapeutic targets to prevent or treat this condition.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!