Objective: We investigated the effectiveness of a tactile torso display as a countermeasure to spatial disorientation (SD) and compared inside-out and outside-in codings.
Background: SD is a serious threat to military as well as civilian pilots and aircraft. Considerable effort has been put into SD countermeasures such as training programs and advanced cockpit displays. Tactile displays have been considered a promising technology.
Method: Twenty-four participants were assigned to the two coding groups (12 per group and matched for age and gender). We used a rotating chair to build up a state of SD by rotating participants around their yaw axis followed by a sudden stop. During the following recovery phase a random disturbance signal was added to the chair's orientation. Participants actively controlled their orientation and were instructed to maintain a stable orientation.
Results: Statistical analyses revealed that recovery from SD was improved with support of the tactile instrument, but tracking performance was reduced. The effects were the same whether the instrument was available full time or during the recovery phase only. There were no differences between outside-in and inside-out coding.
Conclusion: The present study demonstrates the potential of tactile cockpit instruments in controlling SD, even in the presence of strong but misleading self-motion information from the vestibular sense.
Application: Actual or potential applications of this research include spatial disorientation countermeasures for pilots, divers, and astronauts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1518/001872006777724435 | DOI Listing |
Dev Biol
January 2025
Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France. Electronic address:
In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Satellite Application Division, Korea Aerospace Research Institute (KARI), Daejeon 34133, Republic of Korea.
For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.
View Article and Find Full Text PDFBMC Genomics
January 2025
UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology & Laboratory Medicine, 650 Charles E Young Dr. South, Los Angeles, CA, 90095, USA.
Spatial transcriptomics technology enables the mapping of gene expression within tissues, allowing researchers to visualize the spatial distribution of RNA molecules and gain insights into cellular organization, interactions, and functions in their native environments. A variety of spatial technologies are now commercially available, each offering distinct technical parameters such as cellular resolution, detection sensitivity, gene coverage, and throughput. This wide range of options can make it challenges or create confusion for researchers to select the most appropriate platform for their specific research objectives.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd, Beer-Sheva, Israel.
During flight, spatial disorientation (SD) commonly occurs when a pilot's perception conflicts with the aircraft's actual motion, attitude, or position. A prevalent form of SD is the somatogyral illusion, which is elicited by constant speed rotation and causes a false perception of motion in the opposite direction when the rotation ceases. This research aimed to investigate changes in brain activity that occur when experiencing a somatogyral illusion by simulating conditions closely mimicking flight conditions to gain insight into how to better manage this illusion during flight.
View Article and Find Full Text PDFAppl Ergon
January 2025
Samsung Electronics Co. Ltd., South Korea. Electronic address:
Spatial Disorientation (SD) can cause critical aviation accidents by adversely affecting the pilot's ability to perform a flight mission. One of the strategies to improve pilots' ability to deal with SD is to perform SD training using Virtual Reality and Motion Simulator (VRMS) system. However, there is still a lack of studies that investigated the application of VRMS for SD training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!