alpha-Synuclein (alpha-Syn), a protein primarily localized in the presynaptic compartment of neurons, is known to regulate dopaminergic neurotransmission by negatively modulating dopamine transporter activity and regulating its trafficking to or away from the cell surface. Given the considerable homology between dopamine transporters and the serotonin (5-HT) transporter (SERT), we examined whether alpha-Syn could similarly regulate SERT function. Increasing expression levels of human alpha-Syn gradually decreased [(3)H]5-HT uptake by human SERT in cotransfected Ltk(-) cells, by diminishing its V(max) without changing its K(m), as compared to cells expressing only SERT. Biotinylation studies to label cell-surface proteins showed that alpha-Syn decreased the levels of SERT present at the plasma membrane. alpha-Syn and SERT were able to coimmunoprecipitate (co-IP), suggesting heteromeric complexes between these two proteins through direct protein-protein interactions. The negative modulation of SERT activity by alpha-Syn occurred through the non-Abeta-amyloid component (NAC) domain of alpha-Syn (aa58-107); DNA constructs encoding this region mimicked the full-length alpha-Syn protein by decreasing [(3)H]5-HT uptake by the transporter. Furthermore, only the constructs encoding the NAC domain of alpha-Syn prevented the co-IPs between full-length alpha-Syn and SERT, in both transfected cells and in rat solubilized lysates isolated from the prefrontal cortex. These studies suggest a novel physiological role for alpha-Syn in regulating SERT activity and may be of relevance in certain mental illnesses and in depression, in which SERT function is believed to be dysregulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2006.04900.x | DOI Listing |
Soft Matter
January 2025
Computation-based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus.
This work presents an investigation of the influence of poly(-isopropylacrylamide) (PNIPAM) polymer on the structural dynamics of intrinsically disordered alpha-synuclein (α-syn) protein, exploring the formation and intricate features of the resulting α-syn/PNIPAM complexes. Using atomistic molecular dynamics (MD) simulations, our study analyzes the impact of initial configuration, polymer molecular weight, and protein mutations on the α-syn and the α-syn/PNIPAM complex. Atomistic simulations, of a few μs, of the protein/polymer complex reveal crucial insights into molecular interactions within the complex, emphasizing a delicate balance of forces governing its stability and structural evolution.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
The ADNI is detailed in Supplemental Acknowledgments.
Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.
Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.
Int J Mol Sci
January 2025
Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (α-syn) aggregation. Lipid metabolism dysfunction may contribute to PD progression. This study aims to identify lipid metabolism-related genes (LMGs) associated with PD using an integrative transcriptomic analysis of microarray and single-cell RNA sequencing (scRNA-seq) datasets from patients with PD and healthy controls.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
Cicadae Periostracum (CP) is a traditional Chinese animal-derived medicine with the potential to treat Parkinson's disease (PD). This study aims to explore the pharmacodynamic mechanisms of CP against PD-based on metabolomics technology and provide a theoretical basis for developing new anti-PD medicine. First, MPP-induced SH-SY5Y cells were used to evaluate the anti-PD activity of CP.
View Article and Find Full Text PDFBiomedicines
January 2025
Perron Institute for Neurological and Translational Science, Nedlands 6009, Australia.
Background/objectives: The role of α-synuclein (α-syn) pathology in Parkinson's disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides (CARPs) are an emerging class of molecule with multiple neuroprotective mechanisms of action, including protein stabilisation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!