Prostanoid- and interleukin-1-induced primary genes in cementoblastic cells.

J Periodontol

Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA 90095-1668, USA.

Published: August 2006

Background: Cementum is a key component of a functional periodontal organ. However, regenerating lost cementum is difficult and often incomplete. Identifying molecular mediators of cementoblast differentiation and function should lead to better targeted treatment for periodontitis. Prostaglandins increase mineralization of murine cementoblastic OCCM cells and alveolar bone formation, whereas the cytokine interleukin-1 (IL-1) inhibits alveolar bone formation. We hypothesized that differentially induced primary genes in OCCM cells may mediate anabolic and catabolic responses. Our objective was to identify primary genes differentially induced by the synthetic prostanoid fluprostenol and IL-1 in cementoblastic cells.

Methods: Confluent OCCM cells were pretreated with the protein synthesis inhibitor cycloheximide followed by fluprostenol or IL-1 for 1.5 hours. cDNA generated from each group was used for cDNA subtraction hybridization to identify differentially induced genes. Preferential gene induction was verified by Northern blot analysis.

Results: Thirteen fluprostenol- and seven IL-1-regulated genes were identified. Among the fluprostenol-induced genes was mitogen-activated protein (MAP) kinase phosphatase 1 (MKP1), a negative regulator of MAP kinase signaling. To verify the cDNA subtraction hybridization results, OCCM cells were treated with fluprostenol or prostaglandin F2 (PGF2), and MKP1 mRNA levels were determined. The 0.001 to 1 microM fluprostenol and 0.01 to 1 microM PGF2 significantly induced MKP1 mRNA levels, which peaked at 1 hour of treatment and returned to baseline at 2 hours.

Conclusions: Fluprostenol enhanced, whereas IL-1 inhibited, OCCM mineralization. Using cDNA subtraction hybridization, we identified primary genes that correlate with the observed anabolic and catabolic responses. These findings further our understanding of cementoblast function and suggest that differentially induced genes may mediate cementum formation and resorption.

Download full-text PDF

Source
http://dx.doi.org/10.1902/jop.2006.050354DOI Listing

Publication Analysis

Top Keywords

primary genes
16
occm cells
16
differentially induced
16
cdna subtraction
12
subtraction hybridization
12
genes
8
alveolar bone
8
bone formation
8
anabolic catabolic
8
catabolic responses
8

Similar Publications

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Lignin Metabolism Is Crucial in the Plant Responses to (Shen) in L.

Plants (Basel)

January 2025

Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.

(Shen) (Hemiptera: Cicadellidae) is a devastating insect pest species of , significantly affecting the yield and quality of tea. Due to growing concerns over the irrational use of insecticides and associated food safety, it is crucial to better understand the innate resistance mechanism of tea trees to . This study aims to explore the responses of tea trees to different levels of infestation.

View Article and Find Full Text PDF

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

Molecular Mechanisms of Grain Chalkiness Variation in Rice Panicles.

Plants (Basel)

January 2025

Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.

Grain chalkiness adversely affects rice quality, and the positional variation of grain chalkiness within a rice panicle presents a substantial obstacle to quality improvement in China. However, the molecular mechanism underlying this variation is unclear. This study conducted a genetic and physiological analysis of grains situated at distinct positions (upper, middle, and bottom primary branches of the rice panicle, denoted as Y1, Y2, and Y3) within a rice panicle using the Yangdao 6 variety.

View Article and Find Full Text PDF

A water extract of the Ayurvedic plant (L.) Urban, family Apiaceae (CAW), improves cognitive function in mouse models of aging and Alzheimer's disease and affects dendritic arborization, mitochondrial activity, and oxidative stress in mouse primary neurons. Triterpenes (TT) and caffeoylquinic acids (CQA) are constituents associated with these bioactivities of CAW, although little is known about how interactions between these compounds contribute to the plant's therapeutic benefit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!