In a field experiment, five fertilizer treatments including chemical fertilizer (CF), rapeseed cake + chemical fertilizer (RC + CF), wheat straw + chemical fertilizer (WS + CF), cow manure + chemical fertilizer (CM + CF), and pig manure + chemical fertilizer (PM + CF), were dedicated to examine the effect of organic materials incorporation in the rice season on N2O emissions from the following winter wheat season and to assess the climatic impacts from CH4 and N2O emissions in a rice-wheat rotation. Organic material was incorporated at the same rate (225 g x m(-2)) for organic treatments at the depth of 10 cm in the soil as the basal fertilizer just before rice transplanting. An identical synthetic nitrogen fertilizer was adopted for all treatments. Results show that the seasonal amount of N20 emissions from the following wheat season differed with organic material applied in rice season. No pronounced difference in N20 emissions was found between the CF and RC + CF treatments. In contrast with the CF treatment, however, N2O emission was decreased by 15% for the WS + CF treatment, but increased by 29% and 16% for the CM + CF and PM + CF treatments, respectively. Over the entire annual rotation cycle, N2O amount was increased by 17% for the CM + CF treatment, 7% for the PM + CF treatment, and 6% for the RC + CF treatment, but decreased by 16% for the WS + CF treatment in comparison with the CF treatment. Based on total emissions of CH4 in rice season and N2O over the entire rotation cycle, the estimation of combined Global Warming Potentials (GWPs) for CH4 and N20 shows that over a 20 years horizon or a 500 years horizon, the value of annual total GWPs was ranked in the order of RC + CF > WS + CF > CM + CF > PM + CF > CF or RC + CF > CM + CF > PM + CF > WS + CF > CF. The highest, middle and the lowest value of the GWPs per unit crop grain yield occurred for the crop residue, farmyard manure and pure synthetic fertilizer treatments, respectively. Compared to the chemical fertilizer treatment, accordingly, organic material combined with chemical fertilizer application in rice season increased climatic impacts from CH4 and N20 emissions in a rice-winter wheat rotation system.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chemical fertilizer
28
rice season
20
organic material
16
season n2o
12
n2o emissions
12
n20 emissions
12
fertilizer
11
incorporation rice
8
emissions winter
8
winter wheat
8

Similar Publications

Variable effects of a fire-retardant gradient on seasonal wetland communities.

Ecotoxicology

January 2025

Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.

Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition.

View Article and Find Full Text PDF

Investigations of the spatial-temporal variations of nutrients within mangrove coastal zones are essential for assessing the environmental status of an aquatic ecosystems. However, major processes controlling nitrate cycle along the submarine groundwater discharge (SGD) pathway from the mangrove areas to adjacent tidal creek remain underexplored. A time series measurement over a 25 h tidal cycle was conducted in Qinglan Bay tidal creek (Hainan Island, China).

View Article and Find Full Text PDF

Pathogenic bacteria in agroecosystems have been of great concern because of their threat to crop and human health. This study aimed to understand how the microecological environment created by different fertilization regimes affects the fate of soil and crop pathogenic microorganisms. The situation of soil and crop pathogenic bacteria in different ecosystems was explored by setting up seven different fertilization treatments.

View Article and Find Full Text PDF

The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.

View Article and Find Full Text PDF

pH remains the most important chemical parameter and must be monitored for positive outcomes in areas as different as cheese making and fertilisation (IVF). Where blood gas analysers enable patient monitoring, starter cultures in cheese manufacturing are still monitored using conventional pH electrodes. Here, we present a homogeneous multiwell plate sensor for monitoring pH, with the same sensitivity as a pH electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!