Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reactive oxygen species and Ca2+ overload play a critical role in ischemia/reperfusion (I/R) injury. MCI-186 has potent effects in the brain as a free radical scavenger in ischemia-reperfusion. Acute glucose-oxygen deprivation and subsequent reoxygenation were used to model ischemia/reperfusion injury in cultured hippocampal cells. MCI-186 reduced malondialdehyde level and raised the SOD activity when applied upon reoxygenation in a dose-dependent manner compared with the untreated group. The peak neuroprotective effects occurred at 100 and 300 microM. Intracellular free calcium concentration ([Ca2+]i) was significantly reduced in the 100 microM MCI-186-treated group compared to the untreated group (32.5+/-4.0 versus 50.2+/-3.6, p<0.01). Treatment with 100 microM MCI-186 significantly inhibited the decrease of mitochondria membrane potential after simulated ischemia/reperfusion (204+/-11.6% compared with the untreated group, p<0.01). Cell apoptotic rate was significantly decreased following MCI-186 treatment from 33.7+/-2.3% (untreated group) to 16.6+/-1.4% (100 microM MCI-186 treated group). There was no significantly protective difference between 100 and 300 microM MCI-186. MCI-186 effectively protects neuron injury after simulated ischemia/reperfusion by inhibiting lipid peroxidation, reducing Ca2+ overload, elevating mitochondria membrane potential, and decreasing apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.29.1613 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!