We report here a development of the MultiSite Gateway(TM)-based versatile plasmid construction system applicable for the rapid and efficient preparation of Aspergillus oryzae expression plasmids. This system allows the simultaneous connection of the three DNA fragments inserted in entry clones along with a destination vector in a defined order and orientation. We prepared a variety of entry clones and destination vectors containing promoters, genes encoding carrier-proteins and fusion tags, and selectable markers, which makes it possible to generate 80 expression plasmids for each target protein. Using this system, plasmids for expression of the EGFP fused with the mitochondrial-targeting signal of citrate synthase (AoCit1) were generated. Tubular structures of mitochondria were visualized in the transformants expressing the AoCit1-EGFP fusion protein. This plasmid construction system allows us to prepare a large number of expression plasmids without laborious DNA manipulations, which would facilitate molecular biological studies on A. oryzae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.60052 | DOI Listing |
While engineering modular polyketide synthases (PKSs) using the recently updated module boundary has yielded libraries of triketide-pentaketides, this strategy has not yet been applied to the combinatorial biosynthesis of macrolactones or macrolide antibiotics. We developed a 2-plasmid system for the construction and expression of PKSs and employed it to obtain a refactored pikromycin synthase in that produces 85 mg of narbonolide per liter of culture. The replacement, insertion, deletion, and mutagenesis of modules enabled access to hexaketide, heptaketide, and octaketide derivatives.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China. Electronic address:
Rahnella aquatilis is an emerging opportunistic pathogen that usually causes septicaemia in fish and poses a potential threat to human health. VgrG gene is an important virulence factor of type VI secretion system in R. aquatilis, but its regulatory mechanism underlying PANoptosis is still unknown.
View Article and Find Full Text PDFViruses
December 2024
School of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.
Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.
View Article and Find Full Text PDFPharmaceutics
January 2025
Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary.
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!