Protection by 6-aminonicotinamide against oxidative stress in cardiac cells.

Pharmacol Res

Department of Medical Physiology, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, The Panum Institute 12.5, Blegdamsvej 3, Copenhagen N, Denmark.

Published: October 2006

Oxidative stress at the time of reperfusion is a major aspect of ischemia-reperfusion injury in heart as well as in other organs. There is a continuing interest in development of pharmacological approaches to alleviate this injury. 6-Aminonicotinamide (6AN) has been shown to diminish myocardial necrosis following global ischemia in an isolated rat heart, apparently by limiting the oxidative injury component. We therefore explored the antioxidative potential of 6AN in a model using H9C2(2-1) rat cardiac myoblasts exposed to H2O2 stress. Dependent on the specific protocol, 6AN pretreatment for 6-23 h resulted in a strongly increased cell survival: from 11% to 16% in untreated cells to 56-75% following 6AN treatment. This 6AN-mediated protection was associated with a modest increase (up to 55%) of the cytosolic free Ca2+, and was blocked by ryanodine, but not by verapamil or nifedipine. The protective effect of 6AN was associated with a decrease in total cell content of the reduced glutathione (GSH) by 15-44%, indicative of an oxidative shift in the GSH/GSSG system redox potential. We propose that this redox shift caused an increased Ca2+ leak through ryanodine receptors, reflecting their known sensitivity to redox modulation. In turn, this Ca2+ redistribution appeared to trigger a state of an enhanced antioxidative resistance, somewhat analogous to the phenomenon of Ca2+ preconditioning. Similar to some of the cases of Ca2+ preconditioning, this protected state involved the activity of Ca2+ -independent, but not of Ca2+ -dependent, isoform(s) of protein kinase C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2006.06.007DOI Listing

Publication Analysis

Top Keywords

oxidative stress
8
ca2+ preconditioning
8
ca2+
7
6an
5
protection 6-aminonicotinamide
4
oxidative
4
6-aminonicotinamide oxidative
4
stress cardiac
4
cardiac cells
4
cells oxidative
4

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Enhancing metformin efficacy with cholecalciferol and taurine in diabetes therapy: Potential and limitations.

World J Diabetes

January 2025

Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), poses a significant global health challenge. Traditional management strategies primarily focus on glycemic control; however, there is a growing need for comprehensive approaches addressing the complex pathophysiology of diabetes complications. The recent study by Attia explores the potential of a novel therapy combining metformin with cholecalciferol (vitamin D3) and taurine to mitigate T2DM-related complications in a rat model.

View Article and Find Full Text PDF

Background: Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!