The purpose of this investigation was to develop and evaluate a wobbling mass model of a female performing a drop landing and to examine the influence of soft tissue properties on the impact loads experienced. A planar model comprising a foot, shank, thigh and upper body segment was developed. Spring-damper systems coupled the foot to the ground and the wobbling masses to the rigid masses. Unlike traditional wobbling mass models of landing, the model included a foot segment, which allowed replication of forefoot-heel landing techniques and also used subject and movement-specific properties to simulate the landings. Kinematics and force data collected for three drop landings (height 0.46 m) performed by a female were separately used to drive and evaluate the model. The wobbling mass model successfully reproduced the measured force profiles to 9% (RMS differences) of the measured range and replicated the measured peak vertical ground reaction forces to 6%. The accuracies of the wobbling mass model and a corresponding rigid mass model were compared. The inclusion of soft tissue properties in the model contributed up to an 8.6 bodyweights reduction in peak impact loading and produced a 52% more accurate replication of the measured force profiles. The prominent role soft tissues have in load attenuation and the benefits of modelling soft tissue in simulations of landings were therefore highlighted. The success of the wobbling mass model in replicating the kinetics of actual landing performances suggests the model may be used in the future to gain a realistic insight into load attenuation strategies used by females.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humov.2006.04.003DOI Listing

Publication Analysis

Top Keywords

wobbling mass
24
mass model
24
soft tissue
16
model
11
tissue properties
8
measured force
8
force profiles
8
load attenuation
8
wobbling
7
mass
7

Similar Publications

We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine (U). Recently, we investigated whether the desulfuration of S2U is a natural process that also occurs in the cells exposed to oxidative stress or whether it only occurs in the test tube during chemical reactions with oxidants at high concentrations.

View Article and Find Full Text PDF

Carcinogenesis is an evolutionary process, and mutations can fix the selected phenotypes in selective microenvironments. Both normal and neoplastic cells are robust to the mutational stressors in the microenvironment to the extent that secure their fitness. To test the robustness of genes under a range of mutagens, we developed a sequential mutation simulator, Sinabro, to simulate single base substitution under a given mutational process.

View Article and Find Full Text PDF

A body immersed in a supersaturated fluid like carbonated water can accumulate a dynamic field of bubbles upon its surface. If the body is mobile, the attached bubbles can lift it upward against gravity, but a fluid-air interface can clean the surface of these lifting agents and the body may plummet. The process then begins anew, and continues for as long as the concentration of gas in the fluid supports it.

View Article and Find Full Text PDF

ALKBH8 contributes to neurological function through oxidative stress regulation.

PNAS Nexus

March 2024

Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.

Transfer RNA (tRNA) modification is essential for proper protein translation, as these modifications play important roles in several biological functions and disease pathophysiologies. AlkB homolog 8 (ALKBH8) is one of the nine mammalian ALKBH family molecules known to regulate selenoprotein translation through the modification of the wobble uridine (U34) in tRNA; however, its specific biological roles remain unclear. In this study, we investigated the role of ALKBH8 using -knockout () mice, which were observed to have reduced 5-methoxycarbonylmethyluridine (mcm5U) and (S)-5-methoxycarbonylhydroxymethyluridine levels; notably, the mcm5U level was partially compensated only in the brain.

View Article and Find Full Text PDF

Stop codon readthroughs were examined in 48 recombinant therapeutic protein candidates produced from multiple clones of Chinese hamster ovary cells, using peptide mapping with LC-MS/MS detection. We found that stop codon readthrough is a common phenomenon occurring in most of these candidates, with levels varying from below the detection limit of ∼0.001 % to ∼1 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!