Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation.

FEBS J

Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Campinas, Brazil.

Published: September 2006

The human 57 kDa Ki-1 antigen (Ki-1/57) is a cytoplasmic and nuclear protein, associated with Ser/Thr protein kinase activity, and phosphorylated at the serine and threonine residues upon cellular activation. We have shown that Ki-1/57 interacts with chromo-helicase DNA-binding domain protein 3 and with the adaptor/signaling protein receptor of activated kinase 1 in the nucleus. Among the identified proteins that interacted with Ki-1/57 in a yeast two-hybrid system was the protein arginine-methyltransferase-1 (PRMT1). Most interestingly, when PRMT1 was used as bait in a yeast two-hybrid system we were able to identify Ki-1/57 as prey among 14 other interacting proteins, the majority of which are involved in RNA metabolism or in the regulation of transcription. We found that Ki-1/57 and its putative paralog CGI-55 have two conserved Gly/Arg-rich motif clusters (RGG/RXR box, where X is any amino acid) that may be substrates for arginine-methylation by PRMT1. We observed that all Ki-1/57 protein fragments containing RGG/RXR box clusters interact with PRMT1 and are targets for methylation in vitro. Furthermore, we found that Ki-1/57 is a target for methylation in vivo. Using immunofluorescence experiments we observed that treatment of HeLa cells with an inhibitor of methylation, adenosine-2',3'-dialdehyde (Adox), led to a reduction in the cytoplasmic immunostaining of Ki-1/57, whereas its paralog CGI-55 was partially redistributed from the nucleus to the cytoplasm upon Adox treatment. In summary, our data show that the yeast two-hybrid assay is an effective system for identifying novel PRMT arginine-methylation substrates and may be successfully applied to other members of the growing family of PRMTs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2006.05399.xDOI Listing

Publication Analysis

Top Keywords

yeast two-hybrid
12
ki-1/57
9
ki-1/57 interacts
8
two-hybrid system
8
paralog cgi-55
8
rgg/rxr box
8
protein
6
prmt1
5
interacts prmt1
4
prmt1 substrate
4

Similar Publications

Yeast two-hybrid library screening enables the discovery of novel protein-protein interactions. Identifying cytosolic host proteins targeted by host-translocated Phytophthora effector proteins relies on the mRNA amount, quality, and composition used to prepare the yeast two-hybrid cDNA library. Here we describe the steps required for the preparation of a Pinus radiata cDNA library optimized for Phytophthora effector target screening in yeast.

View Article and Find Full Text PDF

Genomic identification of the gene family in apple and functional analysis of involved in flowering transition.

Mol Breed

January 2025

College of Horticulture, Yangling Subsidiary Center Project of the National Apple Improvement Center, Northwest A&F University, Yangling, 712100 Shannxi China.

Unlabelled: Apple is a crucial economic product extensively cultivated worldwide. Its production and quality are closely related to the floral transition, which is regulated by intricate molecular and environmental factors. () is a transcription factor that is involved in regulating plant growth and development, with certain play significant roles in regulating flowering.

View Article and Find Full Text PDF

The inclusion membrane protein Cpn0308 interacts with host protein ACBD3.

J Bacteriol

December 2024

Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China.

is an obligate intracellular bacterium of eukaryotic cells characterized by a unique biphasic life cycle; its biosynthesis and replication must occur within a cytoplasmic vacuole or inclusion. Certain inclusion membrane proteins have been demonstrated to mediate the interactions between intra-inclusion chlamydial organisms and the host cell. It has been demonstrated previously that the -encoded Cpn0308 localizes to the inclusion membrane; however, its function remains unknown.

View Article and Find Full Text PDF

Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.

View Article and Find Full Text PDF

BrSWEET11 accelerated Arabidopsis thaliana flowering, while silencing Brsweet11 in Brassica rapa delayed flowering relative to controls. BrSWEET11 is involved in sucrose transport after being induced by long-day conditions. SWEETs (Sugars Will Eventually Be Exported Transporters) are sugar outflow transporters that may participate in the regulation of plant flowering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!