Polyamine oxidases (PAOs, EC 1.5.3.11) are key enzymes responsible for the terminal catabolism of polyamines in plants, bacteria and protozoa. In barley, two PAO isoforms (HvPAO1 and HvPAO2) have been previously analyzed as regards their tissue expression and subcellular localization. Only the major isoform HvPAO2 has been biochemically characterized up to now. In order to study the ear-specific expression of the HvPAO1 isoform in detail, RT-PCR analysis was performed in barley on the whole ear and on various ear tissues. Moreover, HvPAO1promoter::GUS transient expression was examined in barley developing caryopses at 30-day postfertilization. Results from these analyses have demonstrated that the HvPAO1 gene is specifically expressed in all the ear organs analyzed (i.e. basal lemma, rachis, awn, embryo-deprived caryopsis, embryo and sterile spikelets), at variance with the HvPAO2 gene, which is expressed at high levels in sterile spikelets and at very low levels in embryos. We purified HvPAO1 from barley immature caryopses and characterized its catalytic properties. Furthermore, we carried out in vitro synthesis of HvPAO1 protein in a cell-free translation system. The HvPAO1 enzymes purified from immature caryopses and in vitro synthesized showed the same catalytic properties, in particular, an optimum at pH 7.0 for Spd and Spm oxidation and comparable Km values for both substrates, i.e. 0.89x10(-5) M and 0.5x10(-5) M for Spd and Spm, respectively. It has been found that HvPAO1 enzyme activity significantly differs in substrate specificity and pH optimum when compared with the major isoform HvPAO2. As a whole, these data strongly suggest that, in barley, the two PAO genes evolved separately, after a duplication event, to code for two distinct tissue-specific enzymes, and they are likely to play different physiological roles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2006.05402.x | DOI Listing |
Plants (Basel)
March 2024
Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
Continuous spring cropping of Qingke ( L. var. nudum Hook.
View Article and Find Full Text PDFJ Appl Genet
February 2023
Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology (ZUT), ul. Słowackiego 17, 71-434, Szczecin, Poland.
Powdery mildew (PM), a common cereal disease in cultivated areas, including Europe and other temperate regions, is caused by the fungus Blumeria graminis. While PM is one of the most important wheat leaf diseases globally, rye is highly tolerant to PM. It has been reported that in barley infected with PM, polyamine oxidase (PAO) activity related to the production of hydrogen peroxide (HO) has increased, which may promote defense against biotrophic or hemibiotrophic pathogens.
View Article and Find Full Text PDFFoods
February 2022
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Plant Physiol Biochem
February 2020
Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
Stripe rust is a fungal disease that has devastated the barley production for a long time. The present study focused on the role of β-glucan, PR proteins, diamine oxidase (DAO), polyamine oxidase (PAO), key enzymes and metabolites of phenol and proline metabolism in the stripe rust resistance of barley. RD2901 with resistant behavior against stripe rust showed increased levels of PR proteins, phenylalanine ammonia lyase (PAL), tyrosine ammonia lyase (TAL) along with the accumulation of β-glucan and lignin which strengthen the plant cell wall during plant-pathogen interaction.
View Article and Find Full Text PDFPlanta
October 2018
Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
Although the PAO/phyllobilin pathway of chlorophyll breakdown is active in grass leaf senescence, the abundance of phyllobilins is far below the amount of degraded chlorophyll. The yellowing of fully developed leaves is the most prominent visual symptom of plant senescence. Thereby, chlorophyll is degraded via the so-called pheophorbide a oxygenase (PAO)/phyllobilin pathway to a species-specific set of phyllobilins, linear tetrapyrrolic products of chlorophyll breakdown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!