Pneumococcal surface protein A (PspA) is effective at eliciting T cell-mediated responses during invasive pneumococcal disease in adults.

Clin Exp Immunol

Unité d'Epidémiologie des Maladies Emergentes, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.

Published: August 2006

Humoral immune response is essential for protection against invasive pneumococcal disease and this property is the basis of the polysaccharide-based anti-pneumococcal vaccines. Pneumococcal surface protein A (PspA), a cell-wall-associated surface protein, is a promising component for the next generation of pneumococcal vaccines. This PspA antigen has been shown to stimulate an antibody-based immunity. In the present study, we evaluated the capacity of PspA to stimulate CD4+ T cells which are needed for the correct development of a B cell based immune response in humans. Cellular immunity to PspA was evaluated by whole-blood culture with different pneumococcal antigens, followed by flow cytometric detection of activated CD4+CD25+ T cells. T cell-mediated immune responses to recombinant PspA proteins were assessed in acute-phase and convalescent blood from adults with invasive pneumococcal disease and in blood from healthy subjects. All cases had detectable antibodies against PspA on admission. We found that invasive pneumococcal disease induced transient T cell depletion but adaptive immune responses strengthened markedly during convalescence. The increased production of both interleukin (IL)-10 and interferon (IFN)-gamma during convalescence suggests that these cytokines may be involved in modulating antibody-based immunity to pneumococcal disease. We demonstrated that PspA is efficient at eliciting T cell immune responses and antibodies to PspA. This study broadens the applicability of recombinant PspA as potent pneumococcal antigen for vaccination against S. pneumoniae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1809691PMC
http://dx.doi.org/10.1111/j.1365-2249.2006.03148.xDOI Listing

Publication Analysis

Top Keywords

pneumococcal disease
20
invasive pneumococcal
16
surface protein
12
immune responses
12
pneumococcal
10
pspa
10
pneumococcal surface
8
protein pspa
8
immune response
8
antibody-based immunity
8

Similar Publications

Introduction: Patients with chronic inflammatory diseases are often treated with pharmacologic therapies that target the immune system and have an increased risk of infection. These risks can be reduced by vaccination against common pathogens. This quality improvement project aimed to increase pneumococcal and herpes zoster vaccination rates in patients with chronic inflammatory disease on biologic immunosuppressive therapy.

View Article and Find Full Text PDF

SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in D39.

Front Microbiol

January 2025

Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.

capsular polysaccharide (CPS) is a crucial virulence factor for this pathogenic bacterium and is partially under transcriptional control. In this study, we used electrophoretic mobility shift assays and DNA enzyme footprinting to identified the hypothetical protein SPD_0410 as a negative regulator of locus. Our results showed that the D39Δ mutant strain exhibited significantly elevated CPS levels compared to the parental strain D39s.

View Article and Find Full Text PDF

The development of safe and effective mucosal vaccines are hampered by safety concerns associated with adjuvants or live attenuated microbes. We previously demonstrated that targeting antigens to the human-Fc-gamma-receptor-I (hFcγRI) eliminates the need for adjuvants, thereby mitigating safety concerns associated with the mucosal delivery of adjuvant formulated vaccines. Here we evaluated the role of the route of immunization in the mucosal immunity elicited by the hFcγRI-targeted vaccine approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!