The Coffin-Lowry syndrome (CLS) is a rare X-linked semidominant syndrome characterized by severe psychomotor retardation, facial dysmorphism, digit abnormalities and progressive skeletal deformations. CLS is caused by mutations in a gene located in Xp22.2, RPS6KA3. This gene encodes for a growth factor-regulated serine/threonine protein kinase, RSK2 (ribosomal S6 kinase 2), acting in the Ras-mitogen-activated protein kinase signaling pathway. Mutations in the RPS6KA3 gene are extremely heterogeneous and lead to premature termination of translation and/or to loss of phosphotransferase activity of the RSK2 protein. Screening for RSK2 mutations is essential in most cases to confirm the diagnosis as well as for genetic counseling. Here we present 44 novel mutations in RSK2 causing CLS. The overall number of CLS mutations reported now is 128. Thirty-three percent of mutations are missense mutations, 15% nonsense mutations, 20% splicing errors and 29% short deletion or insertion events. Only four large deletions have so far been found. They are distributed throughout the RPS6KA3 gene, and the majority has been found in a single family. This study further confirms the high rate of new mutations at the RSK2 locus. It is important to consider the possibility of mosaicism when providing genetic counseling in CLS families.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1399-0004.2006.00660.x | DOI Listing |
Leukemia
January 2025
Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan.
Multiple myeloma (MM) remains a difficult-to-treat disease even with the latest therapeutic advances due to the complex, overlapping, and heterogeneous cytogenetic, genetic, and molecular abnormalities. To address this challenging problem, we previously identified the universal and critical roles of RSK2 and AKT, the effector signaling molecules downstream of PDPK1, regardless of cytogenetic and genetic profiles. Based on this, in this study, we investigated the anti-myeloma potency of TAS0612, a triple inhibitor against RSK, including RSK2, AKT, and S6K.
View Article and Find Full Text PDFCell Death Discov
May 2024
Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
Caspase-8 (Casp8) serves as an initiator of apoptosis or a suppressor of necroptosis in context-dependent manner. Members of the p90 RSK family can phosphorylate caspase-8 at threonine-265 (T265), which can inactivate caspase-8 for bypassing caspase-8-mediated blockade of necroptosis and can also decrease caspase-8 level by promoting its degradation. Mutating T265 in caspase-8 to alanine (A) in mice blocked TNF-induced necroptotic cecum damage but resulted in unexpectedly massive injury in the small intestine.
View Article and Find Full Text PDFJ Biol Chem
March 2024
Molecular Virology Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium. Electronic address:
The p90 ribosomal S6 kinases (RSK) family of serine/threonine kinases comprises four isoforms (RSK1-4) that lie downstream of the ERK1/2 mitogen-activated protein kinase pathway. RSKs are implicated in fine tuning of cellular processes such as translation, transcription, proliferation, and motility. Previous work showed that pathogens such as Cardioviruses could hijack any of the four RSK isoforms to inhibit PKR activation or to disrupt cellular nucleocytoplasmic trafficking.
View Article and Find Full Text PDFJ Hepatol
September 2023
Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France; Functional Genomics of Solid Tumors Laboratory, équipe Labellisée Ligue Nationale Contre le Cancer, Paris, France. Electronic address:
Background & Aims: Recurrent somatic mutations of the RPS6KA3 gene encoding for the serine/threonine kinase RSK2 were identified in hepatocellular carcinomas (HCCs), suggesting its tumour-suppressive function. Our goal was to demonstrate the tumour suppressor role of RSK2 in the liver and investigate the functional consequences of its inactivation.
Methods: We analysed a series of 1,151 human HCCs for RSK2 mutations and 20 other driver genetic alterations.
J Biol Chem
June 2023
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA. Electronic address:
Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!