Treatment of Cs[(CF3)3BNH2] with the aminating agent H2NOSO3H in aqueous solution allowed the isolation of pure Cs[(CF3)3BH], which is stable up to 300 degrees C. Due to the strong electron-withdrawing effect of the CF3 substituents, the [(CF3)3BH]- anion behaves as a very unreactive hydride. It is stable in concentrated hydrochloric acid for many days but reacts cleanly with F2, Cl2, and Br2 to the corresponding haloborates. The molecular structure was determined by single-crystal X-ray diffraction. Crystal data: orthorhombic, space group Pnma; a = 11.4296(5) A, b = 7.9510(4) A, c = 9.7268(5) A; V = 883.94(7) A(3), Z = 4; R1 = 0.0294, wR2 = 0.0818. The anions exhibit only Cs symmetry in the lattice. The natural and deuterated anions were characterized by IR, Raman, and multinuclear NMR spectroscopy; vibrational assignments were supported by DFT calculations. QTAIM charges derived from the B3LYP electron density are given for [(CF3)3BH]- and several related anions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic0604361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!