A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2006.10464502DOI Listing

Publication Analysis

Top Keywords

pm10 pm25
28
particulate matter
16
chemical characterization
12
emission plumes
12
industrial emission
12
pm10
11
pm25
11
characterization industrial
8
fine particulate
8
emission sources
8

Similar Publications

BACKGROUND Exposure to air pollution (AP) during pregnancy is associated with pre-labor rupture of membranes (PROM). However, there is limited research on this topic, and the sensitive exposure windows remain unclear. The present study assessed the association between AP exposure and the risk of PROM, as well as seeking to identify the sensitive time windows.

View Article and Find Full Text PDF

Role of air pollutants in dengue fever incidence: evidence from two southern cities in Taiwan.

Pathog Glob Health

September 2023

Center for Evidence-Based Health Care, Department of Medical Research, Taipei Medical University Shuang Ho Hospital, New Taipei, Taiwan.

Air pollution may be involved in spreading dengue fever (DF) besides rainfalls and warmer temperatures. While particulate matter (PM), especially those with diameter of 10 μm (PM10) or 2.5 μm or less (PM25), and NO2 increase the risk of coronavirus 2 infection, their roles in triggering DF remain unclear.

View Article and Find Full Text PDF

Previous studies have attempted to clarify the relationship between the occurrence of pulmonary tuberculosis (PTB) and exposure to air pollutants. However, evidence from multi-centres, particularly at the national level, is scarce, and no study has examined the modifying effect of greenness on air pollution-TB associations. In this study, we examined the association between long-term exposure to ambient air pollutants (PM p.

View Article and Find Full Text PDF

Air quality changes during the coronavirus disease 2019 (COVID-19) pandemic in China has attracted increasing attention. However, more details in the changes, future air quality trends, and related death benefits on a national scale are still unclear. In this study, a total of 352 Chinese cities were included.

View Article and Find Full Text PDF

[Impact of Particulate Matter (PM 2,5 ) and children's hospitalizations for respiratory diseases. A case cross-over study].

Rev Chil Pediatr

April 2019

Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile.

Article Synopsis
  • Santiago de Chile experiences significant air pollution during winter, with particulate matter levels often exceeding WHO standards, impacting the health of its population, particularly children.
  • The study analyzed data from over 72,000 hospitalizations for respiratory diseases among children under 15, focusing on the effects of particulate matter while accounting for the presence of respiratory syncytial virus (RSV).
  • Results indicated that higher levels of PM2.5 were associated with increased hospitalizations for respiratory issues, highlighting that even short-term exposure can have serious health consequences for children.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!