Hydroxides of magnesium and zinc, aluminum oxide, zinc phosphate, and co-precipitated Ca3(PO4)2 and Mg(OH)2 were efficient in binding extracellular glucose oxidase (GO) of P. adametzii LF F-2044.1 in a culture liquid filtrate (CLF). Basic Al2O3 was the most appropriate adsorbent for GO isolation from the CLF of the fungus. A GO isolation method was developed, which allowed for obtaining an enzyme with a high degree of purification. Spectral properties of the enzyme, its catalytic activity, and stability were characterized. The GO of P. adametzii LF F-2044.1 exhibited high pH stability, retaining activity within the range 4.5-9.0. The rate that GO-catalyzed D-glucose oxidation increased as the temperature increased (up to approximately 60 degrees C). The catalytic activity and thermal stability of GO depended on its concentration in the medium. Under optimum conditions, the fractions GO-1 and GO-2 were characterized by KM values of 1.56 x 10(-2) and 2.19 x 10(-2) M, respectively; the corresponding values of kcat equaled 235.1 and 318.2 s(-1).
Download full-text PDF |
Source |
---|
The antihyperglycemic activity of extracellular polysaccharopeptides (ePSP) obtained from Trametes versicolor (TV) strain LH-1 has been demonstrated in hepatic cells and diabetic animals. This study further investigated the mechanisms of T. versicolor-ePSP on regulating glucose metabolism, including insulin signaling molecules and glucose metabolism-associated enzymes, in the liver of rats with type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.
Aim: To explore the impact of MIZ on diabetic nephropathy (DN).
Methods: Diabetic mice were created using db/db mice.
Pharmacol Ther
January 2025
Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:
The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.
View Article and Find Full Text PDFReprod Biol
January 2025
Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India. Electronic address:
In this cross-sectional study, we have analyzed advanced glycation end products (AGEs) in the plasma and follicular fluid of women with polycystic ovary syndrome (PCOS) taking metformin during in vitro fertilization (IVF) and control women undergoing IVF. Glucose, fructose, fructosamine, carboxymethyl lysine/ arginine (CML/R) proteins, and pentosidine were measured in the plasma and paired follicular fluid. Glycated proteins were characterized by mass spectrometry.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
November 2024
The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.
Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!