Hydroxides of magnesium and zinc, aluminum oxide, zinc phosphate, and co-precipitated Ca3(PO4)2 and Mg(OH)2 were efficient in binding extracellular glucose oxidase (GO) of P. adametzii LF F-2044.1 in a culture liquid filtrate (CLF). Basic Al2O3 was the most appropriate adsorbent for GO isolation from the CLF of the fungus. A GO isolation method was developed, which allowed for obtaining an enzyme with a high degree of purification. Spectral properties of the enzyme, its catalytic activity, and stability were characterized. The GO of P. adametzii LF F-2044.1 exhibited high pH stability, retaining activity within the range 4.5-9.0. The rate that GO-catalyzed D-glucose oxidation increased as the temperature increased (up to approximately 60 degrees C). The catalytic activity and thermal stability of GO depended on its concentration in the medium. Under optimum conditions, the fractions GO-1 and GO-2 were characterized by KM values of 1.56 x 10(-2) and 2.19 x 10(-2) M, respectively; the corresponding values of kcat equaled 235.1 and 318.2 s(-1).

Download full-text PDF

Source

Publication Analysis

Top Keywords

extracellular glucose
8
glucose oxidase
8
adametzii f-20441
8
catalytic activity
8
[isolation characterization
4
characterization extracellular
4
oxidase penicillium
4
penicillium adametzii
4
adametzii f-20441]
4
f-20441] hydroxides
4

Similar Publications

The antihyperglycemic activity of extracellular polysaccharopeptides (ePSP) obtained from Trametes versicolor (TV) strain LH-1 has been demonstrated in hepatic cells and diabetic animals. This study further investigated the mechanisms of T. versicolor-ePSP on regulating glucose metabolism, including insulin signaling molecules and glucose metabolism-associated enzymes, in the liver of rats with type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

G protein-coupled purinergic P2Y receptors in infectious diseases.

Pharmacol Ther

January 2025

Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:

The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.

View Article and Find Full Text PDF

Early and advanced glycation end product analysis from women with PCOS on metformin.

Reprod Biol

January 2025

Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India. Electronic address:

In this cross-sectional study, we have analyzed advanced glycation end products (AGEs) in the plasma and follicular fluid of women with polycystic ovary syndrome (PCOS) taking metformin during in vitro fertilization (IVF) and control women undergoing IVF. Glucose, fructose, fructosamine, carboxymethyl lysine/ arginine (CML/R) proteins, and pentosidine were measured in the plasma and paired follicular fluid. Glycated proteins were characterized by mass spectrometry.

View Article and Find Full Text PDF

Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes.

Extracell Vesicles Circ Nucl Acids

November 2024

The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.

Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!