Antibacterial peptides have been isolated from a wide range of species. Some of these peptides act on microbial membranes, disrupting their barrier function. With the increasing development of antibiotic resistance by bacteria, these antibacterial peptides, which have a new mode of action, have attracted interest as antibacterial agents. To date, however, few effective high-throughput approaches have been developed for designing and screening peptides that act selectively on microbial membranes. In vitro display techniques are powerful tools to select biologically functional peptides from peptide libraries. Here, we used the ribosome display system to form peptide-ribosome-mRNA complexes in vitro from nucleotides encoding a peptide library, as well as immobilized model membranes, to select specific sequences that recognize bacterial membranes. This combination of ribosome display and immobilized model membranes was effective as an in vitro high-throughput screening system and enabled us to identify motif sequences (ALR, KVL) that selectively recognized the bacterial membrane. Owing to host toxicity, it was not possible to enrich any sequence expected to show antimicrobial activity using another in vitro system, e.g. phage display. The synthetic peptides designed from these enriched motifs acted selectively on the bacterial model membrane and showed antibacterial activity. Moreover, the motif sequence conferred selectivity onto native peptides lacking selectivity, and decreased mammalian cell toxicity of native peptides without decreasing their antibacterial activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.774DOI Listing

Publication Analysis

Top Keywords

peptides
9
vitro system
8
high-throughput screening
8
peptide libraries
8
recognize bacterial
8
bacterial membranes
8
antibacterial peptides
8
microbial membranes
8
ribosome display
8
immobilized model
8

Similar Publications

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Identification of Butyrylcholinesterase-Derived Small Molecule Peptides Indicative of Novichok Nerve Agent Exposures.

Chem Res Toxicol

January 2025

Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, Georgia 30341, United States.

Novichok nerve agents, such as A-230, A-232, and A-234, were classified as Schedule 1 chemicals under the Chemical Weapons Convention (CWC) by the Organisation for the Prohibition of Chemical Weapons (OPCW) following poisoning incidents in 2018. As a result, the production, storage, and use of these chemicals are strictly prohibited by CWC signatory nations. The identification of biomarkers indicating Novichok exposure in humans is crucial for prompt detection and response to potential incidents involving these banned chemical weapons.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!