Patients with Andersen-Tawil syndrome (ATS) mostly have mutations on the KCNJ2 gene, producing loss of function or dominant-negative suppression of the inward rectifier K(+) channel Kir2.1. However, clinical manifestations of ATS including dysmorphic features, periodic paralysis (hypo-, hyper-, or normokalemic), long QT, and ventricular arrhythmias (VAs) are considerably variable. Using a modified dynamic Luo-Rudy simulation model of cardiac ventricular myocytes, we attempted to elucidate mechanisms of VA in ATS by analyzing effects of the inward rectifier K(+) channel current (I(K1)) on the action potential (AP). During pacing at 1.0 Hz with extracellular K(+) concentration ([K(+)](o)) at 4.5 mM, a stepwise 10% reduction of Kir2.1 channel conductance progressively prolonged the terminal repolarization phase of the AP along with gradual depolarization of the resting membrane potential (RMP). At 90% reduction, early afterdepolarizations (EADs) became inducible and RMP was depolarized to -52.0 mV (control: -89.8 mV), followed by emergence of spontaneous APs. Both EADs and spontaneous APs were facilitated by a decrease in [K(+)](o) and suppressed by an increase in [K(+)](o). Simulated beta-adrenergic stimulation enhanced delayed afterdepolarizations (DADs) and could also facilitate EADs as well as spontaneous APs in the setting of low [K(+)](o) and reduced Kir2.1 channel conductance. In conclusion, the spectrum of VAs in ATS may include 1) triggered activity mediated by EADs and/or DADs and 2) abnormal automaticity manifested as spontaneous APs. These VAs can be aggravated by a decrease in [K(+)](o) and beta-adrenergic stimulation and may potentially induce torsade de pointes and cause sudden death. In patients with ATS, the hypokalemic form of periodic paralysis should have the highest propensity to VAs, especially during physical activity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00393.2006DOI Listing

Publication Analysis

Top Keywords

spontaneous aps
16
ventricular arrhythmias
8
andersen-tawil syndrome
8
rectifier channel
8
periodic paralysis
8
kir21 channel
8
channel conductance
8
decrease [k+]o
8
beta-adrenergic stimulation
8
ats
5

Similar Publications

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na and TRP Channels.

Biomolecules

December 2024

Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.

Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.

View Article and Find Full Text PDF

Background And Aims: We assessed clinical, procoagulant and genetic risk factors and clinical outcomes in dabigatran-treated patients with non-tumoural acute and acute-on-chronic portal vein thrombosis (PVT).

Methods: Patients with a new diagnosis of non-tumoural acute and acute-on-chronic PVT between January 2021 and January 2024 (aged ≥ 18 years) in those without/with cirrhosis (Child-Pugh (CP)-A/B/C ≤ 10) were started on dabigatran and followed and compared with those on vitamin K antagonist (VKA) and untreated individuals.

Results: Dabigatran was prescribed in 119 patients with PVT type 1 (61, 51.

View Article and Find Full Text PDF

[Use of hydroxychloroquine in recurrent immune-mediated obstetric diseases (excluding systemic lupus): Scientific basis and evidence].

Rev Med Interne

December 2024

Service de médecine interne et inflammation, département inflammation-immunopathologie-biothérapie (DMU I3), CEREMAIAA, hôpital Saint-Antoine, AP-HP, Sorbonne université, Paris, France.

Hydroxychloroquine (HCQ), a synthetic antimalarial, is recognized for its immunomodulatory, anti-inflammatory and vascular-protective effects. In 20-30% of cases of primary obstetrical antiphospholipid syndrome (APS), the combination of antiplatelet aggregation and prophylactic anticoagulation fails to prevent obstetrical complications, a situation referred to as refractory obstetrical APS. This is partly due to the pro-inflammatory effects of antiphospholipid antibodies (aPL) binding to decidual and trophoblastic cells, which compromise embryonic implantation and placentation.

View Article and Find Full Text PDF

Identifying sex similarities and differences in structure and function of the sinoatrial node in the mouse heart.

Front Med (Lausanne)

December 2024

Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.

Background: The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!