Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To investigate the interactive effects of atmospheric carbon dioxide concentration ([CO(2)]) and nutrition on photosynthesis and its acclimation to elevated [CO(2)], a two-way factorial experiment was carried out with two nutritional regimes (high- and low-nitrogen (N), phosphorus (P) and potassium (K)) and two CO(2) concentrations (360 and 720 ppm) with white birch seedlings (Betula papyrifera Marsh.) grown for four months in environment-controlled greenhouses. Elevated [CO(2)] enhanced maximal carboxylation rate (V(cmax)), photosynthetically active radiation-saturated electron transport rate (J(max)), actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/F(m)') and photosynthetic linear electron transport to carboxylation (J(c)) after 2.5 months of treatment, and it increased net photosynthetic rate (A(n)), photosynthetic water-use efficiency (WUE), photosynthetic nitrogen-use efficiency (NUE) and photosynthetic phosphorus-use efficiency (PUE) after 2.5 and 3.5 months of treatment, but it reduced stomatal conductance (g(s)), transpiration rate (E) and the fraction of total photosynthetic linear electron transport partitioned to oxygenation (J(o)/J(T)) after 2.5 and 3.5 months of treatment. Low nutrient availability decreased A(n), WUE, V(cmax), J(max), triose phosphate utilization (TPU), (/F(m)' - F)//F(m)' and J(c), but increased J(o)/J(T) and NUE. Generally, V(cmax) was more sensitive to nutrient availability than J(max). There were significant interactive effects of [CO(2)] and nutrition over time, e.g., the positive effects of high nutrition on A(n), V(cmax), J(max), DeltaF/F(m)' and J(c) were significantly greater in elevated [CO(2)] than in ambient [CO(2)]. In contrast, the interactive effect of [CO(2)] and nutrition on NUE was significant after 2.5 months of treatment, but not after 3.5 months. High nutrient availability generally increased PUE after 3.5 months of treatment. There was evidence for photosynthetic up-regulation in response to elevated [CO(2)], particularly in seedlings receiving high nutrition. Photosynthetic depression in response to low nutrient availability was attributed to biochemical limitation (or increased mesophyll resistance) rather than stomatal limitation. Elevated [CO(2)] reduced leaf N concentration, particularly in seedlings receiving low nutrition, but had no significant effect on leaf P or K concentration. High nutrient availability generally increased area-based leaf N, P and K concentrations, but had negligible effects on K after 2.5 months of treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/26.11.1457 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!