We have assessed the effect of somatostatin on the phospholipase C activity in isolated rat pancreatic islets. The phospholipase C activity was measured as the generation of inositol 1,4,5-trisphosphate and its metabolite inositol 1,3,4-trisphosphate from the hydrolysis of polyphosphoinositides. Inositol phosphates were measured using anion-exchange fast protein liquid chromatography analysis of extracts from islets prelabelled with myo-[3H]inositol. Somatostatin (1-1000 nmol l-1) significantly inhibited the glucose-induced (12 mmol l-1) phospholipase C activity in a concentration-dependent manner. The Ca2+ channel blocker verapamil (25 mumol l-1) also inhibited the glucose-induced (12 mmol l-1) phospholipase C, whereas the combination of somatostatin and verapamil did not induce any additional inhibition. At 3.3 mmol l-1 glucose, the hypoglycaemic sulphonylurea, tolbutamide (1 mmol l-1), increased the phospholipase C activity. This effect was reversed by somatostatin (100 nmol l-1). Tolbutamide did not further increase the glucose-induced (12 mmol l-1) phospholipase C activity. However, the somatostatin inhibition of glucose-induced (12 mmol l-1) phospholipase C was reversed by tolbutamide. The activator of adenylyl cyclase, forskolin (20 mumol l-1), did not exert any effect on the PLC-inhibition of somatostatin, whereas forskolin alone inhibited the phospholipase C activation at 12 mmol l-1 glucose. Our study demonstrates that somatostatin inhibits the hydrolysis of polyphosphoinositides in pancreatic islets, apparently via a mechanism dependent on Ca2+ and not on cAMP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1748-1716.1991.tb09253.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!