Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The surface activity of bovine lipid extracted surfactant (BLES) preparations used in surfactant replacement therapy is studied in dynamic film compression/expansion cycles as a function of relative humidity, surfactant concentration, compression rate, and compression periodicity. BLES droplets were formed in a constrained sessile droplet configuration (CSD). Images obtained during cycling were analyzed using axisymmetric drop shape analysis (ADSA) to yield surface tension, surface area, and drop volume data. The experiments were conducted in a chamber that allowed both humid (100% RH), and "dry" air (i.e. less than 20% RH) environments. It was observed that in humid environments BLES films are not stable and tend to have poor surface activity compared to BLES films exposed to dry air. Further analysis of the data reveal that if BLES films are compressed fast enough (i.e. at physiological conditions) to avoid film hydration, lower minimum surface tensions are achieved. A film hydration-relaxation mechanism is proposed to explain these observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2006.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!