A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electric near-field enhancing properties of a finite-size metal conical nano-tip. | LitMetric

Finite-difference time-domain (FDTD) technique simulations are performed to study the near-field resonance properties of a silver conical nano-tip with a rounded end. Varying the tip geometry, we have computed the electric field distribution, as well as the electric field enhancement factor in the immediate vicinity of the tip apex. The aim of this study is to find optimal geometric parameters of the conical tip, such as its angle and length, in order to maximize the electric field enhancement factor. The increase of the tip length is shown to result in a redshift of the tip resonance wavelength. In addition, some subsidiary (non-dipole) peaks appear for relatively long tips. The peak enhancement values for the small-angle tips increase with the tip length while those for the large-angle ones decrease with it. At the same time, the dependencies of the field enhancement on the cone angle exhibit non-monotonic behavior. In other words, an optimal angle exists allowing one to maximize the electric near field. Finally, the effect of the supporting dielectric medium on the electric field near the tip apex is discussed. In the approximation used, the effect is shown to leave the main conclusions unchanged.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2006.06.004DOI Listing

Publication Analysis

Top Keywords

electric field
20
field enhancement
12
conical nano-tip
8
enhancement factor
8
maximize electric
8
increase length
8
electric
6
field
6
electric near-field
4
near-field enhancing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!