Electron paramagnetic resonance (EPR) studies of copper ions, Cu(II), as paramagnetic impurity in tetraaqua-di(nicotinamide) Zn(II)-saccharinates single crystals [Zn(nic)2(H2O)4](sac)2, have been investigated at ambient temperature. The detailed EPR analysis shows the only one site and the copper ion entered the lattice substitutionally in place of Zn(II). The spin-Hamiltonian parameters were obtained from the single crystal EPR analysis. By using the EPR data, molecular bonding coefficient and the Fermi contact interaction terms have been evaluated. Superhyperfine splittings were observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2006.05.032 | DOI Listing |
Chemistry
January 2025
Indian Institute of Science Education and Research Bhopal Department of Chemistry, Chemistry, Room No. 226, Academic Block - 2, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.
Unraveling the electronic structure of metal complexes can bring various catalytic possibilities for hydrogen evolution reaction (HER). However, the electronic effect of metal and ligands modulating and switching the reaction center for HER has yet to be comprehensively analyzed. Herein, we report nickel selenoether electrocatalysts which show tunable reaction centers (nickel or ligand) for HER using mild weak acetic acid in less deprotonating DMF solvent.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA.
Purpose: Solid crystalline spin probes, such as lithium phthalocyanine (LiPc) and lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), allow repeated oxygen measurement using electron paramagnetic resonance (EPR). Due to their short relaxation times, their use for pulse EPR oxygen imaging is limited. In this study, we developed and tested a new class of solid composite spin probes that modified the relaxation rates R and R of LiPc or LiNc-BuO probes, which allowed pO measurements in the full dynamic (0-760 torr) range.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Japan.
Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.
Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.
ACS Environ Au
January 2025
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Technische Universitat Dortmund, Chemistry and Chemical Biology, Otto-Hahn-Strasse 4a, 44227, Dortmund, GERMANY.
Iron-sulfur clusters play a crucial role in electron transfer for many essential enzymes, including [FeFe]-hydrogenases. This study focuses on the [4Fe4S] cluster ([4Fe]H) of the minimal [FeFe]-hydrogenase from Chlamydomonas reinhardtii (CrHydA1) and employs advanced spectroscopy, site-directed mutagenesis, molecular dynamics simulations, and QM/MM calculations. We provide insights into the complex electronic structure of [4Fe]H and its role in the catalytic reaction of CrHydA1, serving as paradigm for understanding [FeFe]-hydrogenases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!