Despite the major advances in antiepileptic drug (AED) therapeutics, about one third of patients with epilepsy still do not have adequate seizure control with currently available AEDs when prescribed as monotherapy. Typically, in this setting polytherapy with two or more AEDs is used. Zonisamide (ZNS) is a new AED effective in the treatment of refractory epilepsy and since it is only prescribed in polytherapy regimens, its interactions with other AEDs is of particular importance. The aim of this study was to isobolographically determine interactions between ZNS and four conventional AEDs: carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB), and valproate (VPA), in the mouse maximal electroshock (MES)-induced seizure model. The total brain concentrations of conventional AEDs and ZNS were measured with immunofluorescence and high-pressure liquid chromatography (HPLC), respectively, in order to determine any pharmacokinetic contribution in any observed interactions. With isobolography, synergistic interactions were observed for the combination of ZNS plus VPA and ZNS plus PHT at the fixed-ratio of 1:1, while additivity was observed for their combinations at the remaining dose ratios of 1:3 and 3:1. In contrast, the interactions between ZNS and PB and between ZNS and CBZ, applied at the fixed-ratios of 1:3, 1:1 and 3:1 proved to be additive. None of these AED combinations were associated with motor and long-term memory impairment. Furthermore, whilst brain AED concentrations were unaffected by ZNS, PHT significantly increased and PB reduced brain ZNS concentrations. Thus, the resultant interactions between ZNS and PHT and between ZNZ and PB were consequent to both pharmacodynamic and pharmacokinetic components. Finally, one can conclude that because of the synergistic pharmacodynamic interaction between ZNS and VPA, this combination might be useful in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.euroneuro.2006.06.008 | DOI Listing |
Talanta
January 2025
College of Chemistry, Jilin University, Changchun, 130012, China. Electronic address:
The excessive use of pesticides is an urgent issue facing environmental sustainability and human health. In this study, a uniform dispersion size, good fluorescence performance and mesoporous structure of a ratiometric fluorescent probe were constructed for nicosulfuron detection. A solvent-free in situ solid-phase synthesis method was used to encapsulate biomass carbon dots within mesoporous silica (CDs@mSiO₂), followed by the modification of l-cysteine-modified manganese-doped zinc sulfide quantum dots (ZnS:Mn QDs), to construct a ratiometric fluorescent probe for highly sensitive and selective detection of nicosulfuron.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
Sphalerite flotation is generally achieved by copper activation followed by xanthate collection. This study aims to propose a design idea to find novel collectors from the perspective of molecular design and prove the theoretical feasibility that the collector can effectively recover sphalerite without copper activation. To address this, 30 compounds containing different structures of sulfur atoms and different neighboring atoms were designed based on coordination chemistry.
View Article and Find Full Text PDFAdv Mater
December 2024
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China.
The direct photocatalytic conversion of CO and HO into high-value C chemicals holds great promise but remains challenging due to the intrinsic difficulty of C-C and C-C coupling processes and the lack of clarity regarding the underlying reaction mechanisms. Here, the design and synthesis of a Cu-ZnS photocatalyst featuring dispersed Cu single atoms are reported. These Cu single atoms are coordinated with S atoms, forming unique Cu-S-Zn active units with tunable charge distributions that interact favorably with surface-adsorbed intermediates.
View Article and Find Full Text PDFNano Lett
December 2024
Graduate School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
In colloidal quantum dots (QDs), excitons are confined within nanoscale dimensions, and the relaxation of hot electrons occurs through Auger cooling. The behavior of hot electrons is evident under ambient pressure. Nanocrystal characteristics, including their size, are key to determining hot electron behavior because they serve as the stage.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Colleges Universities Key Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Minzu University, Nanning 530006, China.
In this work, we developed a highly accurate and sensitive two-emission fluorescence sensor, integrated with a smartphone, for the rapid detection of Cu and Cr in aqueous solution. This sensor comprised AgInS/ZnS quantum dots (AIS/ZnS QDs) and metal-AIEgen frameworks (MAFs). Upon mixing in a specific ratio, the hybrid system can emit a white light when exposed to a UV lamp (365 nm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!