We investigated the subcellular distribution of human ZBP1, which harbors the N-terminal Z-DNA binding domains, Zalpha and Zbeta. ZBP1 was distributed primarily in the cytoplasm and occasionally as nuclear foci in interferon (IFN)-treated primary hepatocellular carcinoma cells, and in several other transfected cell types. In leptomycin B (LMB)-treated cells, endogenous ZBP1 efficiently accumulated in nuclear foci, which overlapped PML oncogenic domains (PODs) or nuclear bodies (NBs). In transfection assays, the unique C-terminal region of ZBP1 was necessary for its typical cytoplasmic localization. Interestingly, the Zalpha-deleted form displayed an increased association with PODs compared to wild-type and, unlike wild-type, perfectly accumulated in PODs in LMB-treated cells, implying that the presence of Zalpha domain also facilitates the cytoplasmic localization. Our results demonstrate that ZBP1 is localized primarily in the cytoplasm but also associated with nuclear PODs in IFN or LMB-treated cells. Given that about half of ZBP1 mRNA lacks exon 2 encoding the Zalpha domain, our data also suggest that the localization of ZBP1 may be differentially regulated by the Z-DNA binding domain, Zalpha, in splice variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.07.061 | DOI Listing |
Sci Immunol
March 2025
Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
Photosensitivity is observed in numerous autoimmune diseases and drives poor quality of life and disease flares. Elevated epidermal type I interferon (IFN) production primes for photosensitivity and enhanced inflammation, but the substrates that sustain and amplify this cycle remain undefined. We show that IFN-induced Z-DNA binding protein 1 (ZBP1) stabilizes ultraviolet (UV) B-induced cytosolic Z-DNA derived from oxidized mitochondrial DNA.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2025
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine, and Frontiers Science Centre for Cell Responses, Nankai University, Tianjin, 300071, P.R. China.
Z-DNA binding protein 1 (ZBP1) has emerged as a critical pathogen-sensing protein that upon activation, triggers necroptotic signaling cascades, leading to a potent inflammatory response and potentially causing significant tissue damage. However, available drugs specifically developed for the effective inhibition or degradation of ZBP1 is still lacking so far. In this study, we developed a potent covalent recognition-based PROTAC (C-PROTAC) molecule for the degradation of ZBP1.
View Article and Find Full Text PDFJ Microbiol
January 2025
Department of Biological Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America.
Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China.
Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!